OpenCV与AI深度学习 | 使用YOLOv8做目标检测、实例分割和图像分类(包含实例操作代码)

本文来源公众号“OpenCV与AI深度学习”,仅用于学术分享,侵权删,干货满满。

原文链接:使用YOLOv8做目标检测、实例分割和图像分类

0 导  读

        本文主要介绍YOLOv8及使用它做目标检测、实例分割和图像分类演示,仅供参考。

1 背景介绍

    YOLOv8是来自Ultralytics的最新的基于YOLO的对象检测模型系列,提供最先进的性能。

    利用以前的 YOLO 版本,YOLOv8模型更快、更准确,同时为训练模型提供统一框架,以执行:

  • 物体检测
  • 实例分割
  • 图像分类

    下面是使用YOLOv8做目标检测和实例分割的演示视频:

YOLOv8做目标检测和实例分割的演示视频

2 YOLOv8的新特性与可用模型

        Ultralytics为YOLO模型发布了一个全新的存储库。它被构建为 用于训练对象检测、实例分割和图像分类模型的统一框架。

        以下是有关新版本的一些主要功能:

  • 用户友好的 API(命令行 + Python)。
  • 更快更准确。
  • 支持:
    • 物体检测
    • 实例分割
    • 图像分类
  • 可扩展到所有以前的版本。
  • 新骨干网络。
  • 新的无锚头。
  • 新的损失函数。

        YOLOv8 还高效灵活地支持多种导出格式,并且该模型可以在 CPU 和 GPU 上运行。

        YOLOv8 模型的每个类别中有五个模型用于检测、分割和分类。YOLOv8 Nano 是最快和最小的,而 YOLOv8 Extra Large (YOLOv8x) 是其中最准确但最慢的。

        YOLOv8 捆绑了以下预训练模型:

  • 在图像分辨率为 640 的 COCO 检测数据集上训练的目标检测检查点。
  • 在图像分辨率为 640 的 COCO 分割数据集上训练的实例分割检查点。
  • 在图像分辨率为 224 的 ImageNet 数据集上预训练的图像分类模型。

如下是使用YOLOv8x做目标检测和实例分割模型的输出:


3 如何使用YOLOv8

    要充分发挥YOLOv8的潜力,需要从存储库和ultralytics包中安装要求。要安装要求,我们首先需要克隆存储库。

git clone https://github.com/ultralytics/ultralytics.git
pip install -r requirements.txt

在最新版本中,Ultralytics YOLOv8提供了完整的命令行界面 (CLI) API 和 Python SDK,用于执行训练、验证和推理。要使用yoloCLI,我们需要安装ultralytics包。

pip install ultralytics

【1】如何使用命令行界面 (CLI) 使用 YOLOv8?

        安装必要的包后,我们可以使用命令访问 YOLOv8 CLI yolo。以下是使用yoloCLI 运行对象检测推理的示例。

yolo task=detect \
mode=predict \
model=yolov8n.pt \
source="image.jpg"

        该task标志可以接受三个参数:detect、classify和segment。同样,模式可以是train、val或之一predict。我们也可以像export导出经过训练的模型时一样传递模式。

【2】如何通过Python API使用YOLOv8?

我们还可以创建一个简单的Python文件,导入YOLO模块并执行我们选择的任务。

from ultralytics import YOLOmodel = YOLO("yolov8n.pt")  # load a pretrained YOLOv8n modelmodel.train(data="coco128.yaml")  # train the model
model.val()  # evaluate model performance on the validation set
model.predict(source="https://ultralytics.com/images/bus.jpg")  # predict on an image
model.export(format="onnx")  # export the model to ONNX format

例如,上述代码首先会在COCO128数据集上训练YOLOv8 Nano模型,在验证集上进行评估,并对样本图像进行预测。

让我们使用yoloCLI 并使用对象检测、实例分割和图像分类模型进行推理。

【3】目标检测的推理结果

以下命令使用YOLOv8 Nano模型对视频运行检测。

yolo task=detect mode=predict model=yolov8n.pt source='input/video_3.mp4' show=True

推理在笔记本电脑GTX1060 GPU上以接近105 FPS的速度运行。我们得到以下输出:

图片

YOLOv8 Nano 模型在几帧中将猫混淆为狗。让我们使用 YOLOv8 Extra Large 模型对同一视频运行检测并检查输出:

yolo task=detect mode=predict model=yolov8x.pt source='input/video_3.mp4' show=True

Extra Large模型在GTX1060 GPU上的平均运行速度为 17 FPS。

图片

【4】实例分割的推理结果

使用YOLOv8 实例分割模型运行推理同样简单。我们只需要更改上面命令中的task和model名称。

yolo task=segment mode=predict model=yolov8x-seg.pt source='input/video_3.mp4' show=True

因为实例分割与对象检测相结合,所以这次的平均 FPS 约为 13。

图片

分割图在输出中看起来非常干净。即使猫在最后几帧中躲在方块下,模型也能够检测并分割它。

【5】图像分类推理结果

最后,由于YOLOv8已经提供了预训练的分类模型,让我们使用该yolov8x-cls模型对同一视频进行分类推理。这是存储库提供的最大分类模型。

yolo task=classify mode=predict model=yolov8x-cls.pt source='input/video_3.mp4' show=True

图片

默认情况下,视频使用模型预测的前5个类进行注释。在没有任何后处理的情况下,注释直接匹配ImageNet类名。

THE END!

文章结束,感谢阅读。您的点赞,收藏,评论是我继续更新的动力。大家有推荐的公众号可以评论区留言,共同学习,一起进步。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/495888.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

vue项目从后端下载文件显示进度条或者loading

//API接口 export const exportDownload (params?: Object, peCallback?: Function) > {return new Promise((resolve, reject) > {axios({method: get,url: ,headers: {access_token: ${getToken()},},responseType: blob,params,onDownloadProgress: (pe) > {peC…

分布式锁的应用与疑惑

文章目录 一、为什么需要用分布式锁二、Redis实现分布式锁三、Zookeeper实现分布式锁 一、为什么需要用分布式锁 集群下,普通的锁,无法解决问题 集群下,保证安全需要使用分布式锁 二、Redis实现分布式锁 Redisson内部封装的RedLock实现分…

强大的Docker入门知识

目录 一、Docker简介 1.1、Docker是 1.2、Docker通常会在以下情况下使用: 1.3、Docker和VMware区别 1.4、Docker 的优点 二、环境配置 2.1、代码操作 2.2、效果演示 2.3、配置镜像仓库 开始配置 三、基本命令 3.1、Docker基本命令 3.2、Docker镜像常用…

生物制药污废水处理需要哪些工艺设备

生物制药行业是一种高度技术化的行业,同时也是一种高度污染的行业。生物制药厂的废水中常含有大量的有机物、重金属离子和其他有害物质,对环境造成了严重的污染。因此,进行生物制药污废水处理,需要采用一系列的工艺设备来处理废水…

在PyCharm中使用Git

安装Git CMD检查Git版本 打开cmd,输入git version,检查当前下载版本 配置git的user信息 在cmd中输入 git config --global user.name "用户名"git config --global user.email "用户邮箱"输入:git config --list&…

【自然语言处理三-self attention自注意是什么】

自然语言处理三-自注意力 self attention 自注意力是什么?自注意力模型出现的原因是什么?词性标注问题解决方法1-扩展window,引用上下文解决方法2-运用seq2seq架构新问题来了:参数量增加、无法并行的顽疾 自注意力self attention模…

《Large Language Models for Generative Information Extraction: A Survey》阅读笔录

论文地址:Large Language Models for Generative Information Extraction: A Survey 前言 映像中,比较早地使用“大模型“”进行信息抽取的一篇论文是2022年发表的《Unified Structure Generation for Universal Information Extraction》,也…

大数据集群管理软件 CDH、Ambari、DataSophon 对比

文章目录 引言工具介绍CDHAmbariDataSophon 对比分析 引言 大数据集群管理方式分为手工方式和工具方式,手工方式一般指的是手动维护平台各个组件,工具方式是靠大数据集群管理软件对集群进行管理维护。本文针对于常见的方法和工具进行比较,帮助…

聊聊最近几款非常流行的勒索病毒

前言 2020年勒索病毒攻击比以往都来的更猛了一点,各种不同的勒索病毒黑客组织都似乎加大了这方面的投入,而且又有一些新的黑客组织加入进来,导致现在勒索病毒攻击越来越频繁了,最近几款流行的勒索病毒都非常活跃,经常…

Redisson 3.18.0版本解决failover相关问题

前言 Redisson 在历史多个版本都出现了failover期间报错的问题并且目前没有一个版本可以完全解决这个问题,所以在当前使用版本3.18.0基础上做了二次开发,达到降低业务由于redis遇到问题导致不可用。 背景 Redisson 作为业务线使用的Redis 客户端&…

[足式机器人]Part2 Dr. CAN学习笔记-Ch00-2 - 数学知识基础

本文仅供学习使用 本文参考: B站:DR_CAN 《控制之美(卷1)》 王天威 《控制之美(卷2)》 王天威 Dr. CAN学习笔记-Ch00 - 数学知识基础 Part2 4. Ch0-4 线性时不变系统中的冲激响应与卷积4.1 LIT System:Linear Time Invariant4.2 卷积 Convolution4.3 单位冲激 Unit Impulse—…

Win UI3开发笔记(四)设置主题续

上文讲到过关于界面和标题栏以及普通文本的主题设置,这篇说一下关于对话框的主题设置。 我最终没找到办法,寻求办法的朋友可以不用接着看了,以下只是过程。 一个对话框包括标题部分、内容部分和按钮部分,其中,在Cont…