Python实现向量自回归移动平均与外生变量模型(VARMAX算法)项目实战

说明:这是一个机器学习实战项目(附带数据+代码+文档+视频讲解),如需数据+代码+文档+视频讲解可以直接到文章最后获取。

1.项目背景

向量自回归移动平均与外生变量模型(Vector Autoregression Moving Average with Exogenous Regressors,简称VARMAX)是一种扩展的多元时间序列分析模型,它结合了向量自回归(VAR)和向量移动平均(VMA)模型的特点,并且允许纳入外生变量作为模型的一部分。

在VARMAX模型中:

向量自回归(VAR):

VAR模型描述了一系列内生变量(即模型内部相互影响的时间序列变量)如何通过它们各自的滞后值以及其他内生变量的滞后值共同决定当前值。比如,一个经济系统中的多个宏观经济指标可能会相互影响并在过去的状态基础上共同决定当前状态。

向量移动平均(VMA):

VMA模型则考虑残差项(即观测值与模型预测值之间的误差)的滞后值对当前变量的影响。

外生变量(Exogenous Regressors):

在VARMAX模型中,除了内生变量的滞后效应之外,还包括了一组外生变量(或称解释变量、前定变量),这些变量不受模型内其他变量的影响,但可以影响模型内的内生变量。例如,在经济分析中,政策利率或者特定的经济政策变化等可能是模型中的外生变量。

综合起来,VARMAX模型能够同时捕捉内生变量之间的动态交互作用、残差项的历史依赖以及外生变量对内生变量的即时和滞后影响,从而提供更全面、灵活的多元时间序列分析框架。

本项目通过VARMAX算法来构建向量自回归移动平均与外生变量模型。   

2.数据获取

本次建模数据来源于网络(本项目撰写人整理而成),数据项统计如下:

编号 

变量名称

描述

1

date

日期

2

dln_inv

投资(Investment)的对数增长率

3

dln_inc

收入(Income)的对数增长率

4

dln_consump

消费(Consumption)的对数增长率

数据详情如下(部分展示):

3.数据预处理

3.1 用Pandas工具查看数据

使用Pandas工具的head()方法查看前五行数据:

关键代码:

3.2 数据缺失查看

使用Pandas工具的info()方法查看数据信息:

      

从上图可以看到,总共有3个变量,数据中无缺失值,共91条数据。

关键代码:

3.3 数据描述性统计

通过Pandas工具的describe()方法来查看数据的平均值、标准差、最小值、分位数、最大值。 

关键代码如下:    

4.探索性数据分析

4.1 变量直方图

用Matplotlib工具的hist()方法绘制直方图:

从上图可以看到,变量主要集中在-0.05~0.10之间。  

4.2 相关性分析

从上图中可以看到,数值越大相关性越强,正值是正相关、负值是负相关。

4.3 折线图

从上图中可以看到,数据是不断波动的。

5.构建向量自回归移动平均与外生变量模型

主要使用VARMAX算法,用于向量自回归移动平均与外生变量模型。 

5.1 构建模型

编号

模型名称

参数

1

向量自回归移动平均与外生变量模型

order=(2, 0)

2

trend='n'

3

exog=exog

5.2 模型摘要信息

6.模型评估

6.1 脉冲响应函数图

6.2 模型预测

预测结果及展示:

7.结论与展望

综上所述,本文采用了VARMAX算法来构建向量自回归移动平均与外生变量模型,最终证明了我们提出的模型效果良好。此模型可用于日常产品的预测。

# 本次机器学习项目实战所需的资料,项目资源如下:# 项目说明:# 获取方式一:# 项目实战合集导航:https://docs.qq.com/sheet/DTVd0Y2NNQUlWcmd6?tab=BB08J2# 获取方式二:链接:https://pan.baidu.com/s/1X2AKD-zOTzBJY83MGq56uA 
提取码:lzli

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/497827.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

金融行业专题|期货超融合架构转型与场景探索合集(2023版)

更新内容: 更新 SmartX 超融合在期货行业的覆盖范围、部署规模与应用场景。新增 CTP 主席系统实践与评测、容器云资源池等场景实践。更多超融合金融核心生产业务场景实践,欢迎下载阅读电子书《SmartX 金融核心生产业务场景探索文章合集》。 面对不断变…

【机器学习】线性回归模型(Linear Regression)

🌸博主主页:釉色清风🌸文章专栏:机器学习🌸今日语录:温柔的一半是知识,没有知识的涵养撑不起你想要的风骨。 ☘️0文章预览 本系列文章主要是根据吴恩达老师的机器学习课程以及自己的理解整合而成&#xf…

electron安装最后一部卡住了?

控制台如下错误 不是的话基本可以划走了 这个很可能是镜像出现问题了,不一定是npm镜像 打开npm的配置文件添加下述 electron_mirrorhttps://cdn.npmmirror.com/binaries/electron/ electron_builder_binaries_mirrorhttps://npmmirror.com/mirrors/electron-build…

机器人内部传感器阅读梳理及心得-速度传感器-模拟式速度传感器

速度传感器是机器人内部传感器之一,是闭环控制系统中不可缺少的重要组成部分,它用来测量机器人关节的运动速度。可以进行速度测量的传感器很多,如进行位置测量的传感器大多可同时获得速度的信息。但是应用最广泛、能直接得到代表转速的电压且…

《TCP/IP详解 卷一》第10章 UDP和IP分片

目录 10.1 引言 10.2 UDP 头部 10.3 UDP校验和 10.4 例子 10.5 UDP 和 IPv6 10.6 UDP-Lite 10.7 IP分片 10.7.1 例子:IPV4 UDP分片 10.7.2 重组超时 10.8 采用UDP的路径MTU发现 10.9 IP分片和ARP/ND之间的交互 10.10 最大UDP数据报长度 10.11 UDP服务器…

三、软考-系统架构设计师笔记-计算机系统基础知识

计算机系统概述 计算机系统是指用于数据管理的计算机硬件、软件及网络组成的系统。 它是按人的要求接收和存储信息,自动进行数据处理和计算,并输出结果信息的机器系统。 冯诺依曼体系计算机结构: 1、计算机硬件组成 冯诺依曼计算机结构将…

OpenCV实现目标追踪

目录 准备工作 语言: 软件包: 效果演示 代码解读 (1)导入OpenCV库 (2)使用 cv2.VideoCapture 打开指定路径的视频文件 (3)使用 vid.read() 读取视频的第一帧,ret…

2024年阿里云2核4G配置服务器测评_ECS和轻量性能测评

阿里云2核4G服务器多少钱一年?2核4G服务器1个月费用多少?2核4G服务器30元3个月、85元一年,轻量应用服务器2核4G4M带宽165元一年,企业用户2核4G5M带宽199元一年。本文阿里云服务器网整理的2核4G参加活动的主机是ECS经济型e实例和u1…

同局域网共享虚拟机(VMware)

一、前言 首先我们先来了解下 VMware 的三种网络模式桥接模式、NAT模式、仅主机模式,网络类型介绍详情可以参考下我之前的文档 Linux系统虚拟机安装(上)第三章 - 第9步指定网络类型。了解三种网络模式的原理之后,再来剖析下需求&…

HuggingFists系统功能介绍(5)--环境资源

模型库 模型库用于管理由HuggingFists系统自己生成的或者外部导入的各种模型。如:HuggingFace网站提供的各类模型可导入该模块进行统一管理及部署。该功能目前在HuggingFists的社区版中并未提供。 环境管理 环境管理-工作节点 环境管理-服务配置 环境管理主要用于与…

sylar高性能服务器-日志(P43-P48)内容记录

文章目录 P43:Hook01一、HOOK定义接口函数指针获取接口原始地址 二、测试 P44-P48:Hook02-06一、hook实现基础二、class FdCtx成员变量构造函数initsetTimeoutgetTimeout 三、class FdManager成员变量构造函数get(获取/创建文件句柄类&#x…

JVM之CMS垃圾收集器详解

CMS垃圾收集器 CMS回收流程 官网: https://docs.oracle.com/javase/8/docs/technotes/guides/vm/gctuning/cms.html#concurrent_mark_sweep_cms_collector CMS(Concurrent Mark Sweep)收集器是一种以获取 最短回收停顿时间为目标的收集器。 采用的是"标记-清除…