【C++从0到王者】第四十六站:图的深度优先与广度优先

文章目录

  • 一、图的遍历
  • 二、广度优先遍历
    • 1.思想
    • 2.算法实现
    • 3.六度好友
  • 三、深度优先遍历
    • 1.思想
    • 2.代码实现
  • 四、其他问题

一、图的遍历

对于图而言,我们的遍历一般是遍历顶点,而不是边,因为边的遍历是比较简单的,就是邻接矩阵或者邻接表里面的内容。而对于遍历顶点就稍微有点麻烦了。

给定一个图G和其中任意一个顶点v0,从v0出发,沿着图中各边访问图中的所有顶点,且每个顶点仅被遍历一次。"遍历"即对结点进行某种操作的意思。

树以前前是怎么遍历的,此处可以直接用来遍历图吗?为什么?

树以前的遍历有深度优先(先序、中序、后序)和广度优先遍历(层序遍历)两种

图也是类似的。

二、广度优先遍历

1.思想

下面是广度优先遍历的一个比较形象的例子

image-20240219162241498

对于下面的图而言,也是类似的,先去找A,然后去遍历A的周围的三个结点,然后遍历这三个结点的周围结点,一层一层往外遍历,最终遍历完所有的结点,需要注意的是不要重复遍历了!

image-20240219162326247

2.算法实现

我们这里用邻接矩阵来实现我们的代码。如下代码所示。

namespace matrix
{//V代表顶点, W是weight代表权值,MAX_W代表权值的最大值,Direction代表是有向图还是无向图,flase表示无向template<class V, class W, W Max_W = INT_MAX, bool Direction = false>class Graph{public://图的创建//1. IO输入 不方便测试//2. 图结构关系写到文件,读取文件//3. 手动添加边Graph(const V* a, size_t n){_vertexs.reserve(n);for (size_t i = 0; i < n; i++){_vertexs.push_back(a[i]);_indexMap[a[i]] = i;}_matrix.resize(n);for (size_t i = 0; i < _matrix.size(); i++){_matrix[i].resize(n, Max_W);}}size_t GetVertexIndex(const V& v){//return _indexMap[v];auto it = _indexMap.find(v);if (it != _indexMap.end()){return it->second;}else{//assert(false)throw invalid_argument("顶点不存在");return -1;}}void AddEdge(const V& src, const V& dst, const W& w){size_t srci = GetVertexIndex(src);size_t dsti = GetVertexIndex(dst);_matrix[srci][dsti] = w;if (Direction == false){_matrix[dsti][srci] = w;}}void Print(){for (size_t i = 0; i < _vertexs.size(); i++){cout << "[" << i << "]" << "->" << _vertexs[i] << endl;}cout << endl;cout << "   ";for (int i = 0; i < _vertexs.size(); i++){//cout << _vertexs[i] << " ";printf("%-3d ", i);}cout << endl;for (size_t i = 0; i < _matrix.size(); i++){//cout << _vertexs[i] << " ";printf("%d ", i);for (size_t j = 0; j < _matrix[i].size(); j++){if (_matrix[i][j] == INT_MAX){cout << " * " << " ";}else{printf("%-3d ", _matrix[i][j]);//cout << _matrix[i][j] << " ";}}cout << endl;}}void BFS(const V& src){int srci = GetVertexIndex(src);queue<int> q; //广度遍历的队列vector<bool> visited(_vertexs.size(), false); //标记数组q.push(srci); //起点入队visited[srci] = true; //已经被遍历过了while (!q.empty()){int front = q.front();q.pop();cout << front << ":" << _vertexs[front] << endl;//把front顶点的邻接顶点入队列for (size_t i = 0; i < _matrix[front].size(); i++){if (_matrix[front][i] != Max_W){if (visited[i] == false){q.push(i);visited[i] = true;}}}}} private:vector<V> _vertexs; //顶点集合map<V, int> _indexMap; //顶点对应的下标关系vector<vector<W>> _matrix; //临界矩阵};

在上面的代码当中,这个图的如下所示

image-20240219171331165

在BFS的时候,我们使用一个队列和一个标记数组来解决。

我们先将第一个起点入队,并且进行标记已经被遍历了,然后像二叉树的层序遍历一样,一层一层去寻找它的周围结点。由于我们用的是邻接矩阵,那么我们就可以以出队列的这个结点为起点,遍历邻接矩阵的对应行,找到满足的进行入队列,然后依次进行标记。从而最终可以遍历整个图

最终结果为

image-20240219171940093

3.六度好友

如下面的题目就是一个简单的广度优先遍历

image-20240219162459971

这道题与二叉树中求出第几层的元素是十分类似的。就是层序遍历,不过要打印出第六层的结果

void BFSLevel(const V& src)
{int srci = GetVertexIndex(src);queue<int> q; //广度遍历的队列vector<bool> visited(_vertexs.size(), false); //标记数组q.push(srci); //起点入队visited[srci] = true; //已经被遍历过了int levelSize = 1;while (!q.empty()){for (int i = 0; i < levelSize; i++){int front = q.front();q.pop();cout << front << ":" << _vertexs[front] << " ";//把front顶点的邻接顶点入队列for (size_t i = 0; i < _matrix[front].size(); i++){if (_matrix[front][i] != Max_W){if (visited[i] == false){q.push(i);visited[i] = true;}}}}cout << endl;levelSize = q.size();}
}
void TestGraphBDFS()
{string a[] = { "张三", "李四", "王五", "赵六", "周七" };Graph<string, int> g1(a, sizeof(a) / sizeof(string));g1.AddEdge("张三", "李四", 100);g1.AddEdge("张三", "王五", 200);g1.AddEdge("王五", "赵六", 30);g1.AddEdge("王五", "周七", 30);g1.Print();g1.BFS("张三");cout << endl;g1.BFSLevel("张三");
}

这里我们用一个循环来记录每层的个数,每打印够一层就换行。如上代码所示

运行结果为

image-20240219174014273

三、深度优先遍历

1.思想

image-20240219180359909

如上是深度优先的一个形象的案例,下面是深度优先在一个图中的实际场景

image-20240219180429488

我们可以看到,他就像二叉树的先序遍历一样,一直走到最深层,然后退回去。这里需要注意的就是要进行标记已经遍历过的结点

2.代码实现

如下是深度优先的代码实现

namespace matrix
{//V代表顶点, W是weight代表权值,MAX_W代表权值的最大值,Direction代表是有向图还是无向图,flase表示无向template<class V, class W, W Max_W = INT_MAX, bool Direction = false>class Graph{public://图的创建//1. IO输入 不方便测试//2. 图结构关系写到文件,读取文件//3. 手动添加边Graph(const V* a, size_t n){_vertexs.reserve(n);for (size_t i = 0; i < n; i++){_vertexs.push_back(a[i]);_indexMap[a[i]] = i;}_matrix.resize(n);for (size_t i = 0; i < _matrix.size(); i++){_matrix[i].resize(n, Max_W);}}size_t GetVertexIndex(const V& v){//return _indexMap[v];auto it = _indexMap.find(v);if (it != _indexMap.end()){return it->second;}else{//assert(false)throw invalid_argument("顶点不存在");return -1;}}void AddEdge(const V& src, const V& dst, const W& w){size_t srci = GetVertexIndex(src);size_t dsti = GetVertexIndex(dst);_matrix[srci][dsti] = w;if (Direction == false){_matrix[dsti][srci] = w;}}void Print(){for (size_t i = 0; i < _vertexs.size(); i++){cout << "[" << i << "]" << "->" << _vertexs[i] << endl;}cout << endl;cout << "   ";for (int i = 0; i < _vertexs.size(); i++){//cout << _vertexs[i] << " ";printf("%-3d ", i);}cout << endl;for (size_t i = 0; i < _matrix.size(); i++){//cout << _vertexs[i] << " ";printf("%d ", i);for (size_t j = 0; j < _matrix[i].size(); j++){if (_matrix[i][j] == INT_MAX){cout << " * " << " ";}else{printf("%-3d ", _matrix[i][j]);//cout << _matrix[i][j] << " ";}}cout << endl;}}void BFS(const V& src){int srci = GetVertexIndex(src);queue<int> q; //广度遍历的队列vector<bool> visited(_vertexs.size(), false); //标记数组q.push(srci); //起点入队visited[srci] = true; //已经被遍历过了while (!q.empty()){int front = q.front();q.pop();cout << front << ":" << _vertexs[front] << endl;//把front顶点的邻接顶点入队列for (size_t i = 0; i < _matrix[front].size(); i++){if (_matrix[front][i] != Max_W){if (visited[i] == false){q.push(i);visited[i] = true;}}}}} void BFSLevel(const V& src){int srci = GetVertexIndex(src);queue<int> q; //广度遍历的队列vector<bool> visited(_vertexs.size(), false); //标记数组q.push(srci); //起点入队visited[srci] = true; //已经被遍历过了int levelSize = 1;while (!q.empty()){for (int i = 0; i < levelSize; i++){int front = q.front();q.pop();cout << front << ":" << _vertexs[front] << " ";//把front顶点的邻接顶点入队列for (size_t i = 0; i < _matrix[front].size(); i++){if (_matrix[front][i] != Max_W){if (visited[i] == false){q.push(i);visited[i] = true;}}}}cout << endl;levelSize = q.size();}}void _DFS(size_t srci, vector<bool>& visited){cout << srci << ":" << _vertexs[srci] << endl;visited[srci] = true;for (int i = 0; i < _matrix[srci].size(); i++){if (_matrix[srci][i] != Max_W && visited[i] == false){_DFS(i, visited);}}}void DFS(const V& src){int srci = GetVertexIndex(src);vector<bool> visited(_vertexs.size(), false);_DFS(srci, visited);}private:vector<V> _vertexs; //顶点集合map<V, int> _indexMap; //顶点对应的下标关系vector<vector<W>> _matrix; //临界矩阵};void TestGraph(){Graph<char, int, INT_MAX, true> g("0123", 4);g.AddEdge('0', '1', 1);g.AddEdge('0', '3', 4);g.AddEdge('1', '3', 2);g.AddEdge('1', '2', 9);g.AddEdge('2', '3', 8);g.AddEdge('2', '1', 5);g.AddEdge('2', '0', 3);g.AddEdge('3', '2', 6);g.Print();}void TestGraphBDFS(){string a[] = { "张三", "李四", "王五", "赵六", "周七" };Graph<string, int> g1(a, sizeof(a) / sizeof(string));g1.AddEdge("张三", "李四", 100);g1.AddEdge("张三", "王五", 200);g1.AddEdge("王五", "赵六", 30);g1.AddEdge("王五", "周七", 30);g1.Print();g1.BFS("张三");cout << endl;g1.BFSLevel("张三");cout << endl;g1.DFS("张三");}}

像先序遍历一样,这里也是需要一个子函数比较好的,因为我们需要使用递归,让子函数去进行递归是最好的

运行结果如下所示

image-20240219180714110

四、其他问题

关于深度优先和广度优先,上面的清空自然是很理想的情况。并且由于起点不同,深度优先和广度优先的结果是不同的。但是有时候,也会出现下面的问题。

比如图不连通的问题。也就是图存在孤立的结点。那么这样的话,以某个点为起点就没有遍历完成

这里我们可以有个解决方案是从visited数组中寻找没有遍历的结点,在进行一次深度优先或者广度优先。也就是要在原来的代码上在套一层。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/502026.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

qt 5.15版本安装

1.qt5.15版本安装 2.安装慢时&#xff0c;切换到清华镜像源&#xff1a;.\qt-unified-windows-x64-online.exe --mirror https://mirrors.tuna.tsinghua.edu.cn/qt/ 3.没有qt 5.15版本在旁边进行筛选&#xff0c;只选archive

项目-SERVER模块-Buffer模块

Buffer模块 一、Buffer模块是什么&#xff1f;实现思想是什么&#xff1f;二、代码实现如何设计&#xff1a;1.成员变量&#xff1a;2.构造函数&#xff1a;3.获取地址和空间大小4.读写偏移向后移动5.扩容函数6.写入函数7.读取函数8.获取地址和空间大小9.获取地址和空间大小10.…

Oracle 11g升级19c 后部分查询功能很慢

*Oracle 11g升级19c 后部分查询功能很慢 今天生产突然有个查询非常慢&#xff0c;日志显示执行了50秒左右&#xff0c;但是从日志中拿出SQL在PLSQL执行&#xff0c;发现用时不到1秒&#xff0c;查看SQL,怀疑是下面几种原因导致 1、使用函数不当 UNIT.UNIT_CODE LIKE CONCAT(‘…

Python小白必学的面向对象

我们已经知道在Python中“一切皆对象”&#xff0c;每个对象都有特定的类型&#xff0c;现在让我们来尝试创建自己的类型——这需要使用class关键字来定义新的“类”&#xff08;Class&#xff09;&#xff0c;类是用来生成对象的“模板”&#xff0c;对象则是其所属类的“实例…

Laravel - API 项目适用的图片验证码

1. 安装 gregwar/captcha 图片验证码接口的流程是&#xff1a; 生成图片验证码 生成随机的 key&#xff0c;将验证码文本存入缓存。 返回随机的 key&#xff0c;以及验证码图片 # 不限于 laravel 普通 php 项目也可以使用额 $ composer require gregwar/captcha2. 开发接口 …

day48 ● 198.打家劫舍 ● 213.打家劫舍II ● 337.打家劫舍III

一遍过。 当前房屋偷与不偷取决于 前一个房屋和前两个房屋是否被偷了。所以这里就更感觉到&#xff0c;当前状态和前面状态会有一种依赖关系&#xff0c;那么这种依赖关系都是动规的递推公式。 class Solution { public:int rob(vector<int>& nums) {vector<vec…

【矩阵】【方向】【素数】3044 出现频率最高的素数

作者推荐 动态规划的时间复杂度优化 本文涉及知识点 素数 矩阵 方向 LeetCode 3044 出现频率最高的素数 给你一个大小为 m x n 、下标从 0 开始的二维矩阵 mat 。在每个单元格&#xff0c;你可以按以下方式生成数字&#xff1a; 最多有 8 条路径可以选择&#xff1a;东&am…

C/C++ 迷宫游戏

游戏介绍 这个迷宫探险游戏有以下功能&#xff1a; 探险&#xff1a;选择该选项后&#xff0c;玩家会进入地下迷宫进行探险。在随机事件中&#xff0c;可能会遇到陷阱、发现金币或者什么都没有发生。陷阱会使玩家失去一定的生命值&#xff0c;金币可以增加玩家的金币数量。 休…

springboot yml方式多环境切换 dev,test,prod环境

第一步,创建对应的yml文件 application.yml application-dev.yml application-prod.yml application-test.yml 第二步,在application.yml中指定对一个的 环境文件 spring:profiles:active: prod记住 只用指定 dev,test,prod 就可以了 第三步 在不同的配置文件,配置不一样…

边缘计算网关在机场生产中的应用-天拓四方

随着工业4.0的推进&#xff0c;物联网&#xff08;IoT&#xff09;技术在各个工业领域中的应用日益广泛。特别是在机床行业&#xff0c;物联网技术的引入不仅提高了生产效率&#xff0c;还实现了对机床设备的实时监控和远程维护。在这一背景下&#xff0c;边缘计算网关的角色愈…

LeetCode刷题--- 乘积为正数的最长子数组长度

个人主页&#xff1a;元清加油_【C】,【C语言】,【数据结构与算法】-CSDN博客 个人专栏 力扣递归算法题 http://t.csdnimg.cn/yUl2I 【C】 ​​​​​​http://t.csdnimg.cn/6AbpV 数据结构与算法 ​​​http://t.csdnimg.cn/hKh2l 前言&#xff1a;这个专栏主要讲述动…

GEE:计算NDVI时间序列和谐波拟合曲线之间的残差时间序列

作者:CSDN @ _养乐多_ 本文将介绍在谷歌地球引擎(Google Earth Engine)使用 Landsat 时间序列数据数据进行时间序列谐波(harmonic)拟合建模,并对模型的残差(residual)序列(计算NDVI时间序列和谐波拟合曲线之间的残差时间序列)进行分析。具体流程为使用Landsat计算ND…