Leetcoder Day37| 动态规划part04 背包问题

01背包理论基础

面试掌握01背包,完全背包和重背包就够用了。

背包问题的理论基础重中之重是01背包,一定要理解透!

01 背包

有n件物品和一个最多能背重量为w 的背包。第i件物品的重量是weight[i],得到的价值是value[i] 。每件物品只能用一次,求解将哪些物品装入背包里物品价值总和最大。

每一件物品其实只有两个状态,取或者不取,所以可以使用回溯法搜索出所有的情况,那么时间复杂度就是o(2^n),这里的n表示物品数量。

所以暴力的解法是指数级别的时间复杂度。进而才需要动态规划的解法来进行优化!

举例:背包最大重量为4。

物品为:

重量价值
物品0115
物品1320
物品2430

问背包能背的物品最大价值是多少?

以下讲解和图示中出现的数字都是以这个例子为例。

二维数组01背包

依然动规五部曲分析一波。

1. 确定dp数组以及下标的含义

对于背包问题,有一种写法, 是使用二维数组,即dp[i][j] 表示从下标为[0-i]的物品里任意取,放进容量为j的背包,价值总和最大是多少要时刻记着这个dp数组的含义,下面的一些步骤都围绕这dp数组的含义进行的。

2.  确定递推公式

有两个方向可以推出来dp[i][j],

  • 不放物品i:由dp[i - 1][j]推出,即背包容量为j,里面不放物品i的最大价值,此时dp[i][j]就是dp[i - 1][j]。(其实就是当物品i的重量大于背包j的重量或背包剩余重量小于i的重量时,物品i无法放进背包中,所以背包内的价值依然和前面相同。)
  • 放物品i:由dp[i - 1][j - weight[i]]推出,dp[i - 1][j - weight[i]] 为背包容量为j - weight[i]的时候不放物品i的最大价值,那么dp[i - 1][j - weight[i]] + value[i] (物品i的价值),就是背包放物品i得到的最大价值。

所以dp[i][j]= max(dp[i - 1][j], dp[i - 1][j - weight[i]] + value[i])

3. dp数组如何初始化

关于初始化,一定要和dp数组的定义吻合,否则到递推公式的时候就会越来越乱

首先从dp[i][j]的定义出发,如果背包容量j为0的话,即dp[i][0],无论是选取哪些物品,背包价值总和一定为0。i是由i-1推出来的,所以i为0的时候就一定要初始化。刚才讨论过j=0的情况,那么i=0时,dp[0][j],即:存放编号0的物品时,各个容量的背包所能存放的最大价值。因此 j < weight[0]时,dp[0][j] 应该是 0,因为背包容量比编号0的物品重量还小。若j>=weight[0],dp[0][j]的值为value[0]。

dp[0][j] 和 dp[i][0] 初始化以后,其他位置都会从i-1或者j-weight[i]而来,因此都会被不断地覆盖,所以初始化为0即可。

4. 确定遍历顺序

在如下图中,可以看出,有两个遍历的维度:物品与背包重量,从哪个方向遍历都可以,因此我们就从物品开始遍历。

public static void backValue(int[]value, int[] weight, int bagWeight){int num=value.length;int[][]dp=new int[num][bagWeight+1];for(int j=weight[0];j<bagWeight;j++){dp[0][j]=value[0];}for(int i=1;i<num;i++){//从物品开始遍历for(int j=1;j<=bagWeight;j++){if(j<weight[i]) dp[i][j]=dp[i-1][j];else{dp[i][j] = Math.max(dp[i-1][j] , dp[i-1][j-weight[i]] + value[i]);}}}System.out.println(dp[num-1][bagWeight]);}   

一维数组01背包

上面的思路是用二维数组来解决01背包问题,还可以用滚动数组来解决,即把二维dp降维。

在使用二维数组的时候,递推公式:dp[i][j] = max(dp[i - 1][j], dp[i - 1][j - weight[i]] + value[i]);

其实可以发现如果把dp[i - 1]那一层拷贝到dp[i]上,表达式完全可以是:dp[i][j] = max(dp[i][j], dp[i][j - weight[i]] + value[i]);

与其把dp[i - 1]这一层拷贝到dp[i]上,不如只用一个一维数组了,只用dp[j](一维数组,也可以理解是一个滚动数组)。

因此,动规五部曲分析如下:

1. 确定dp数组的定义

在一维dp数组中,dp[j]表示:容量为j的背包,所背的物品价值可以最大为dp[j]。

2. 一维dp数组的递推公式

dp[j]为 容量为j的背包所背的最大价值,那么如何推导dp[j]呢?

dp[j]可以通过dp[j - weight[i]]推导出来,dp[j - weight[i]]表示容量为j - weight[i]的背包所背的最大价值。

dp[j - weight[i]] + value[i] 表示 容量为 j - 物品i重量 的背包 加上 物品i的价值。(也就是容量为j的背包,放入物品i了之后的价值即:dp[j])

此时dp[j]有两个选择,一个是取自己dp[j] 相当于 二维dp数组中的dp[i-1][j],即不放物品i,一个是取dp[j - weight[i]] + value[i],即放物品i,指定是取最大的,毕竟是求最大价值。

所以递推公式为:dp[j] = max(dp[j], dp[j - weight[i]] + value[i]);

3. 一维dp数组如何初始化

dp[j]表示:容量为j的背包,所背的物品价值可以最大为dp[j],那么dp[0]就应该是0,因为背包容量为0所背的物品的最大价值就是0。

那么dp数组除了下标0的位置,初始为0,其他下标应该初始化多少呢?

看一下递归公式:dp[j] = max(dp[j], dp[j - weight[i]] + value[i]);

dp数组在推导的时候一定是取价值最大的数,如果题目给的价值都是正整数那么非0下标都初始化为0就可以了。

这样才能让dp数组在递归公式的过程中取的最大的价值,而不是被初始值覆盖了

那么我假设物品价值都是大于0的,所以dp数组初始化的时候,都初始为0就可以了。

4. 一维dp数组遍历顺序

二维dp遍历的时候,背包容量是从小到大,而一维dp遍历的时候,背包是从大到小。

因为倒序遍历是为了保证物品i只被放入一次!。但如果一旦正序遍历了,那么物品0就会被重复加入多次!

举一个例子:物品0的重量weight[0] = 1,价值value[0] = 15

如果正序遍历

dp[1] = dp[1 - weight[0]] + value[0] = 15

dp[2] = dp[2 - weight[0]] + value[0] = 30

此时dp[2]就已经是30了,意味着物品0,被放入了两次,所以不能正序遍历。

为什么倒序遍历,就可以保证物品只放入一次呢?

倒序就是先算dp[2]

dp[2] = dp[2 - weight[0]] + value[0] = 15 (dp数组已经都初始化为0)

dp[1] = dp[1 - weight[0]] + value[0] = 15

所以从后往前循环,每次取得状态不会和之前取得状态重合,这样每种物品就只取一次了。

为什么二维dp数组遍历的时候不用倒序呢?

因为对于二维dp,dp[i][j]都是通过上一层即dp[i - 1][j]计算而来,本层的dp[i][j]并不会被覆盖!

先遍历物品嵌套遍历背包容量,那可不可以先遍历背包容量嵌套遍历物品呢?不可以!

因为一维dp的写法,背包容量一定是要倒序遍历(原因上面已经讲了),如果遍历背包容量放在上一层,那么每个dp[j]就只会放入一个物品,即:背包里只放入了一个物品。

倒序遍历的原因是,本质上还是一个对二维数组的遍历,并且右下角的值依赖上一层左上角的值,因此需要保证左边的值仍然是上一层的,从右向左覆盖。

⚠️一维和二维的区别:(1)一维到序遍历,二维正序遍历(2)一维只能先遍历物品再遍历背包,但是二维两个顺序都可。

public static void getBackValue(int[]value, int[] weight, int bagWeight){int num=value.length;int[]dp=new int[bagWeight+1];for(int j=weight[0];j<bagWeight;j++){dp[j]=value[0];}for(int i=1;i<num;i++){//从物品开始遍历for(int j=bagWeight;j>=weight[i];j--){//要倒序遍历dp[j]=Math.max(dp[j], dp[j-weight[i]]+value[i]);}}System.out.println(dp[bagWeight]);}   

416. 分割等和子集

给定一个只包含正整数的非空数组。是否可以将这个数组分割成两个子集,使得两个子集的元素和相等。

注意: 每个数组中的元素不会超过 100 数组的大小不会超过 200

示例 1:

  • 输入: [1, 5, 11, 5]
  • 输出: true
  • 解释: 数组可以分割成 [1, 5, 5] 和 [11].

示例 2:

  • 输入: [1, 2, 3, 5]
  • 输出: false
  • 解释: 数组不能分割成两个元素和相等的子集.

提示:

  • 1 <= nums.length <= 200
  • 1 <= nums[i] <= 100

这道题希望能够将一个数组拆成两个子集a和b,使得a里面的元素和等于b里面的元素和。

没有什么思路,直接看了代码随想录。原来是01背包问题的变种。

01背包问题:有N件物品和一个最多能背重量为W 的背包。第i件物品的重量是weight[i],得到的价值是value[i] 。每件物品只能用一次,求解将哪些物品装入背包里物品价值总和最大。

注意题目描述中商品是不是可以重复放入。一个商品如果可以重复多次放入是完全背包,而只能放入一次是01背包。

要明确本题中我们要使用的是01背包,因为元素我们只能用一次。

回归主题:首先,本题要求集合里能否出现总和为 sum / 2 的子集。(这一点是我没有想到的)

那么来一一对应一下本题,看看背包问题如何来解决。

只有确定了如下四点,才能把01背包问题套到本题上来:

  • 背包的可容纳的重量为sum / 2
  • 背包要放入的商品(集合里的元素)重量为元素的数值,价值也为元素的数值
  • 背包如果正好装满,说明找到了总和为 sum / 2 的子集。
  • 背包中每一个元素是不可重复放入

dp[j]表示:背包总容量是j,放进物品后,背包的最大价值为dp[j]

那么如果背包需要满足的容量为target,当dp[target]==target时,背包就装满了

class Solution {/**背包的可容纳的重量为sum / 2背包要放入的商品(集合里的元素)重量为元素的数值,价值也为元素的数值背包如果正好装满,说明找到了总和为 sum / 2 的子集。背包中每一个元素是不可重复放入*/public boolean canPartition(int[] nums) {int sum=0;for(int i=0;i<nums.length;i++){sum+=nums[i];}if(sum%2==1) return false;int target=sum/2;//weight[i]和value[i]都是nums[i],当前的bacWeight为targetint[] dp=new int[target+1];for(int j=nums[0];j<target;j++){dp[j]=nums[0];}for(int i=1;i<nums.length;i++){ //先遍历物品for(int j=target;j>=nums[i];j--){//重量要倒序遍历dp[j]=Math.max(dp[j], dp[j-nums[i]]+nums[i]);}}if(dp[target]==target) return true;return false;}
}

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/508316.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

力扣刷题笔记

力扣206 反转链表 题目描述: 给你单链表的头节点head &#xff0c;请你反转链表&#xff0c;并返回反转后的链表。 示例 1&#xff1a; 输入&#xff1a;head [1,2,3,4,5] 输出&#xff1a;[5,4,3,2,1] 示例 2&#xff1a; 输入&#xff1a;head [1,2] 输出&#xff1a;[…

SpringBoot整合MyBatis实现增删改查

✅作者简介:大家好,我是Leo,热爱Java后端开发者,一个想要与大家共同进步的男人😉😉 🍎个人主页:Leo的博客 💞当前专栏: 循序渐进学SpringBoot ✨特色专栏: MySQL学习 🥭本文内容: SpringBoot整合MyBatis实现增删改查 📚个人知识库: Leo知识库,欢迎大家访…

【大厂AI课学习笔记NO.61】环境部署的选择

主要是选择单机和分布式、生产和开发环境的规划等。 开发环境、测试环境、预发布环境和生产环境是软件开发和部署过程中常见的几个环境&#xff0c;它们各自的定义、区别、联系以及实现的关键技术如下&#xff1a; 1. 开发环境&#xff08;Development Environment&#xff09…

12.vue学习笔记(异步组件+依赖注入+Vue应用)

文章目录 1.异步组件2.依赖注入注意事项 3.Vue应用3.1.应用实例3.2.根组件3.3.挂载应用3.4.公共资源文件夹 1.异步组件 目的&#xff1a;优化组件性能 在大型项目中&#xff0c;我们可能需要拆分应用为更小的块&#xff0c;并仅在需要时再从服务器加载相关组件 defineAsyncCom…

Chat GPT:AI聊天机器人的革命性突破!

一、引言 近年来&#xff0c;人工智能&#xff08;AI&#xff09;技术的发展日新月异&#xff0c;其中最具代表性的成果之一便是Chat GPT。这款基于自然语言处理&#xff08;NLP&#xff09;技术的聊天机器人&#xff0c;以其高度智能、灵活多变的特点&#xff0c;迅速吸引了全…

机器学习-面经

经历了2023年的秋招&#xff0c;现在也已经入职半年了&#xff0c;空闲时间将面试中可能遇到的机器学习问题整理了一下&#xff0c;可能答案也会有错误的&#xff0c;希望大家能指出&#xff01;另外&#xff0c;不论是实习&#xff0c;还是校招&#xff0c;都祝福大家能够拿到…

如何使用恢复软件恢复删除的文件?回收站文件恢复攻略

随着计算机在日常生活中的普及&#xff0c;文件的管理和存储成为我们不可或缺的技能。在Windows操作系统中&#xff0c;回收站作为一个帮助我们管理文件删除的重要工具&#xff0c;在误删了一些重要文件之后&#xff0c;我们可能会因为找不到回收站中恢复的文件而感到困惑。本文…

网络编程难点之select、poll与epoll详解

前言 为什么需要I/O多路复用技术&#xff1f; 首先&#xff0c;I/O多路复用技术主要被应用在需要高性能的网络服务器程序中。 高性能网络服务器程序需要做的事情就是供多个客户端同时进行连接并处理客户端传送过来的数据请求&#xff1a; 对于这种情况&#xff0c;很多人自然…

产品营销展示型wordpress外贸网站模板

工艺品wordpress外贸主题 简约大气的wordpress外贸主题&#xff0c;适合做工艺品进出品外贸的公司官网使用。 https://www.jianzhanpress.com/?p5377 餐饮设备wordpress外贸主题 简洁的wordpress外贸主题&#xff0c;适合食品机械、餐饮设备公司使用。 https://www.jianzh…

Pandas DataFrame 基本操作实例100个

Pandas 是一个基于NumPy的数据分析模块&#xff0c;最初由AQR Capital Management于2008年4月开发&#xff0c;并于2009年底开源。Pandas的名称来源于“Panel Data”&#xff08;面板数据&#xff09;和“Python数据分析”&#xff08;data analysis&#xff09;。这个库现在由…

[AutoSar]BSW_Com09 CAN driver 模块FULL(BASIC)CAN、FIFO选择

目录 关键词平台说明一、FULL CAN 和Basic CAN 关键词 嵌入式、C语言、autosar、OS、BSW 平台说明 项目ValueOSautosar OSautosar厂商vector &#xff0c;芯片厂商TI 英飞凌编程语言C&#xff0c;C编译器HighTec (GCC)autosar版本4.3.1 >>>>>回到总目录<&…

Vue-03

Vue指令 v-bind 作用&#xff1a;动态设置html的标签属性&#xff08;src url title…&#xff09; 语法&#xff1a;v-bind:属性名"表达式" 举例代码如下&#xff1a; 实现效果如下&#xff1a; 案例&#xff1a;图片切换 实现代码如下&#xff1a; 实现的效果…