《TCP/IP详解 卷一》第10章 UDP 和 IP 分片

目录

10.1 引言

10.2 UDP 头部

10.3 UDP校验和

10.4 例子

10.5 UDP 和 IPv6

10.6 UDP-Lite

10.7 IP分片

10.7.1 例子:IPV4 UDP分片

10.7.2 重组超时

10.8 采用UDP的路径MTU发现

10.9 IP分片和ARP/ND之间的交互

10.10 最大UDP数据报长度

10.11 UDP服务器的设计

10.11.1 IP地址和UDP端口号

10.11.2 限制本地IP地址

10.11.3 使用多地址

10.11.4 限制远端IP地址

10.11.5 每端口多服务器的使用

10.11.6 跨越地址族:IPv4和IPv6

10.11.7 流量和拥塞控制的缺失

10.12 UDP/IPV4和UDP/IPV6数据报的转换

10.13 互联网中的UDP

10.14 与UDP和IP分片相关的攻击

10.15 总结


10.1 引言

UDP(User Datagram Protocol):用户数据报协议。一种传输层协议。

        IPv4中协议字段值:17。

                特点:

                        有消息边界。

                        开销更小,因为没有TCP复杂机制。

当UDP应用程序每次调用send/write,就发出一个UDP数据报。

而TCP不一定,因为TCP可能分段,重组。

即TCP应用程序执行多次send/write调用会组合成一个数据包发送,或可能一个send/write调用被分成多个数据包发送。

10.2 UDP 头部

头部格式如下:

字段:

        源端口

        目的端口

        长度:UDP报文总长度,包括头部和数据。

        校验和:校验整个UDP报文。

每个socket在创建时必须指定协议类型(TCP或UDP),并绑定到特定端口。

因此,一个套接字不能同时监听TCP/UDP相同端口。

一个主机可以创建两个socket,分别监听TCP和UDP的相同端口号,表示两种不同服务。

10.3 UDP校验和

UDP校验和:校验范围覆盖UDP头部、UDP数据,伪头部。

伪头部(pseudo-header):

        计算UDP校验和时,根据IP头信息生成的虚拟头部。

        伪头部格式通常包括:

                源IP、目标IP、协议类型(UDP),UDP数据报总长等。

        作用:提供更多信息,确保校验更精确。

伪头部细节如下图:

NAT会改变报文IP和端口,所以经过NAT后需要重新校验和。

IPv4头中也有校验和,但只校验IPv4头内容,不包括IP载荷。

        在每跳都要重新计算,因为TTL字段值减小。

小结:

        IPv4头的校验和字段:只校验IPv4头内容。

        传输层TCP/UDP头的校验和字段:校验范围不仅包含传输层头,还有载荷。

10.4 例子

10.5 UDP 和 IPv6

IPv6中TCP/UDP都需要伪头部来计算校验和。

Teredo隧道:

        IPv6数据被封装成IPv4 UDP数据报后,发给Teredo中继,中继解封装后把IPv6报文转发给主机。

Teredo和GRE对比:

        通用性:

                GRE更通用,可封装任何类型数据包。

                Teredo只用于IPv4 UDP封装IPv6数据。

        实现方式:

                GRE:不需要服务器或中继。

                Teredo:需要服务器和中继。

10.6 UDP-Lite

UDP:校验是可选的,要么校验整个UDP报文,要么不校验。

UDP-Lite:对UDP数据一部分校验,而不是整个数据报校验。

        所以未校验部分,容忍比特差错。

UDP-Lite:有单独的IPv4协议和IPv6协议号。算是一种新的传输层协议。

所以UDP- Lite有一个校验和覆盖范围字段,表示需要校验哪部分数据。

        最小值为8,即只校验UDP-Lite头。

        特殊值:0,表示校验整个负载。

socket简化程序举例,设置UDP-Lite校验和覆盖范围:

int main() {

        int sockfd = socket(AF_INET, SOCK_DGRAM, IPPROTO_UDPLITE);

        int send_cscov = 8; // 只校验UDP-Lite头。

        setsockopt(sockfd, IPPROTO_UDPLITE, UDPLITE_SEND_CSCOV, &send_cscov, sizeof(send_cscov)) ;

        

        int recv_cscov = 0; // 校验整个负载

        setsockopt(sockfd, IPPROTO_UDPLITE, UDPLITE_RECV_CSCOV, &recv_cscov, sizeof(recv_cscov));

}

10.7 IP分片

IPv6只允许源主机分片,不允许中间转发设备分片,可减少中间设备负担。

IPv4既允许源主机分片,也允许中间路由器分片。

IP数据报大于MTU则分片。

被分片IP数据报,到了目的地才会重组,这样设计有两个原因:

        1. 减轻中间路由器转发负担。

        2. 同一数据报的不同分片可能经不同路径到达目的地,此时路径上路由器不能收到所有分片,搜到没有能力重组原始数据。

10.7.1 例子:IPV4 UDP分片

数据报分片后,每个分片IPv4头中的总长度字段被修改成该分片的总长度。

任一分片丢失,整个IP数据报无法完整接收。

当TCP报文的一个分片丢失了,TCP协议栈会重传整个TCP报文段,所以通常尽量避免TCP分片。

除最后一个分片外所有分片数据部分应是8字节倍数。

tcpdump为了能打印除了第一个分片外的其他分片的端口号,尝试重组其他分片的数据报,以恢复只出现在第一个分片的UDP头部中的端口号。

10.7.2 重组超时

当任一分片最先到达时,IP层就启动计时器。

若超时前未收到所有分片,无法重组源报文,会丢弃所有分片,防止缓存耗尽。

超时时间:一般30s,60s。

只有接收到了第一个分片并且分片重组失败时,才产生ICMP错误。

10.8 采用UDP的路径MTU发现

PMTU:路径MTU 。

PMTUD:路径MTU发现。

        作用:发现路径中MTU的最小值。发送报文不超过MTU,防止分片。

UDP PMTUD原理:

        源端发送一个较大UDP数据报,并设置 DF(Don't Fragment)标志,确保不被分片。

        某个中间路由器发现数据报超过其出接口MTU,则丢弃该数据报并回复"Packet Too Big" 的ICMP 错误消息给源端。

        源端收到ICMP错误消息后,得到其中指示的MTU。于是重新发送较小的UDP数据报。

        重复该过程就获得一个可在所有路由器通过的MTU,即路径最小MTU,PMTU。

IP层会基于每个目的地址缓存一个PMTUD值,有到该目的地报文则更新,否则超时需要重新尝试PMTUD。

PPPoE MTU:1492

        1500字节去除了6字节PPPoE头部,2字节PPP头部。

10.9 IP分片和ARP/ND之间的交互

10.10 最大UDP数据报长度

理论一个IPv4数据报的最大长度是65535字节。

但实际存在限制,如:

        1. 系统,setsocketopt设置收发缓存大小。

        2. 应用程序。read/write指定读写大小数目小于一个UDP数据报,大多数时候发生API截断数据报,丢弃数据报里超过接收应用程序指定字节数的数据。

MSG_TRUNC标志位:

        当socket收到超过recv函数指定接收缓冲区大小时,如果设置该标志位,系统将丢弃缓冲区以外数据,并且不报告任何错误,而是正常返回已接收数据长度。

MSG_TRUNC使用方法:

        len = recvfrom(sockfd, buf, BUF_SIZE, MSG_TRUNC, (struct sockaddr *)&client_addr, &client_len);

如何获取截断数据大小:

        socklen_t optlen = sizeof(recv_len);

        getsockopt(sockfd, SOL_SOCKET, SO_RCVBUF, &recv_len, &optlen);

而TCP是连续的字节流,没有消息边界,不会被截断。

10.11 UDP服务器的设计

10.11.1 IP地址和UDP端口号

SO_REUSEADDR:

        一个socket选项,当一个socket被关闭后,它的端口号会继续一段时间的被占用。

        在这个时间内,其他程序无法绑定相同端口号,出现"Address already in use"错误。

        设置SO_REUSEADDR选项后,当socket关闭后,立即可以被其他程序绑定,无需等待一段时间。

如何设置SO_REUSEADDR属性:

        int reuse = 1;

        setsockopt(sock, SOL_SOCKET, SO_REUSEADDR, &reuse, sizeof(reuse));

10.11.2 限制本地IP地址

两种策略:

        1. 只有报文目的IP地址是该接收接口的IP时,才接收数据。

        2. 任何本地接口均可接收到目的IP是某本地接口之一的数据。

10.11.3 使用多地址

一台主机上,可以开启多个服务器进程,都使用同一个端口号,但每个服务器进程使用不同本机IP地址。

        通过ip addr add给本机设备配置多个IP地址。

此时需要用SO_REUSEADDR选项告诉系统允许重用相同的端口。

10.11.4 限制远端IP地址

可设置是否只接收来自指定源IPv4地址和端口号的UDP数据报。

10.11.5 每端口多服务器的使用

10.11.6 跨越地址族:IPv4和IPv6

10.11.7 流量和拥塞控制的缺失

UDP没有流量和拥塞控制机制。

10.12 UDP/IPV4和UDP/IPV6数据报的转换

10.13 互联网中的UDP

UDP占据了的互联网流量的10% ~ 40%,随着P2P应用增加,UDP流量也在上升。

互联网总体流量只有极少是分片的(大约分组数的0.3%,字节数的0.8%),而其中分片流量的68.3%是UDP。

常见分片流量如:

        多媒体视频流量(应用层大包)

        VPN隧道中封装/隧道流量(多层封装)

10.14 与UDP和IP分片相关的攻击

常见UDP DoS攻击:

        1. 短时间大流量。UDP没有流控。

        2. 放大攻击。伪造IP源成受害者地址,并设置目的地址为广播。于是广播目的地都回复报文给该受害者。

        3. 泪滴攻击。构造一个重叠偏移分片,可覆盖前一分片部分数据。

        4. 发送不带任何数据的分片,攻击IPv4重组程序。

10.15 总结

UDP是简单协议。

需要组播广播时使用UDP,可避免连接开销。

UDP使用场景:多媒体,P2P。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/508866.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

代码随想录Day66 | 图的DFS与BFS

代码随想录Day66 | 图的DFS与BFS DFS797.所有可能的路径无向图和有向图的处理 BFS200.岛屿数量 DFS 文档讲解:代码随想录 视频讲解: 状态 本质上就是回溯算法。 void dfs(参数) {if (终止条件) {存放结果;return;}for (选择:本节点所连接的…

猴子吃桃问题(python版)

文章预览: 题目python解法一:运行结果 python解法二:运行结果 python解法三:运行结果 题目 猴子吃桃问题:猴子第一天摘下若干个桃子,当即吃了一半,还不过瘾,又多吃了一个。 第二天早…

超全面!Linux学习资料大合集,21套从入门到进阶,看这篇就够了

本文将为那些渴望学习Linux,但又缺乏相应资料和方向的朋友,提供21套Linux优质资料,包含入门到进阶,希望能对大家有所帮助。 此合集内容及其丰富,涉及方面颇多,不仅适合Linux入门学习的朋友,运维…

水电站数字孪生:水力发电在可视化领域的应用

自水轮机的早期发明被用于农业灌溉,到 18 世纪末期的工业革命促使水轮机技术的改良,再到 19 世纪末水利发电的崛起,直至今日,智慧水电站数字孪生技术正处于蓬勃发展之中。通过整合物联网、大数据、云计算等现代信息技术&#xff0…

【Zookeeper】ZooKeeper的一些重要功能和作用

🍎个人博客:个人主页 🏆个人专栏:日常聊聊 ⛳️ 功不唐捐,玉汝于成 目录 前言 正文 结语 我的其他博客 前言 随着分布式系统的普及和应用场景的不断增加,构建可靠、高效的分布式系统变得愈发重要。然…

开短路测试

一、介绍 连接性测试,可以叫开短路测试,也可叫接触性测试,英文为Continuity Test或Open & Short Test,主要用来检验测试过程中电学连接是否良好,包括测试设备本身、测试设备与Loadboard、DUT本身等等,是…

SpringBoot接口防抖(防重复提交)的一些实现方案

前言 啥是防抖 思路解析 分布式部署下如何做接口防抖? 具体实现 请求锁 唯一key生成 重复提交判断 前言 作为一名老码农,在开发后端Java业务系统,包括各种管理后台和小程序等。在这些项目中,我设计过单/多租户体系系统&a…

一文梳理LIN协议与应用

目录 一、LIN是什么?有什么用?二、LIN概要描述2.1 特点2.1.1 低成本2.1.2 易扩展2.1.3 速率一般,不高 2.2 网络形态2.3 架构分层 三、应用层 4 大功能3.1 配置3.2 识别(查询功能)3.3 信号处理3.4 诊断 四、协议层介绍4…

深入理解Docker自定义网络:构建高效的容器网络环境

文章目录 一、docker自定义网络介绍1.1 docker自定义网络介绍1.2 使用技术的优势1.3 基本使用流程 二、实战操作2.1 模式理论介绍bridge模式(默认模式)host模式 2.2 模式特点查看桥接模式的特点查看仅主机模式的特点 2.3 实战操作bridge模式host模式自定义网络 一、docker自定义…

傻瓜式——Kibana 作图指北

背景:比较重要的功能即将上线,需要观测一些项目运行指标,项目周边用了kibana ,想用Kibana 简单做一些图。 难者不会,会者不难—— 在Kibana 中找到这个标签页——可视化 2. 新增可视化图 3. 可以选取自己需要的图样式&#xff…

【EAI 027】Learning Interactive Real-World Simulators

Paper Card 论文标题:Learning Interactive Real-World Simulators 论文作者:Mengjiao Yang, Yilun Du, Kamyar Ghasemipour, Jonathan Tompson, Leslie Kaelbling, Dale Schuurmans, Pieter Abbeel 作者单位:UC Berkeley, Google DeepMind, …

智慧草莓基地:Java与SpringBoot的技术革新

✍✍计算机毕业编程指导师 ⭐⭐个人介绍:自己非常喜欢研究技术问题!专业做Java、Python、微信小程序、安卓、大数据、爬虫、Golang、大屏等实战项目。 ⛽⛽实战项目:有源码或者技术上的问题欢迎在评论区一起讨论交流! ⚡⚡ Java、…