NLP_文本数据分析(代码示例)

目标

  • 了解文本数据分析的作用.
  • 掌握常用的几种文本数据分析方法.

1 文件数据分析介绍

  • 文本数据分析的作用:

    • 文本数据分析能够有效帮助我们理解数据语料, 快速检查出语料可能存在的问题, 并指导之后模型训练过程中一些超参数的选择.
  • 常用的几种文本数据分析方法:

    • 标签数量分布
    • 句子长度分布
    • 词频统计与关键词词云

2 数据集说明

  • 基于真实的中文酒店评论语料来解析常用的几种文本数据分析方法.

  • 中文酒店评论语料:

    • 属于二分类的中文情感分析语料, 该语料存放在"./cn_data"目录下.
    • 其中train.tsv代表训练集, dev.tsv代表验证集, 二者数据样式相同.
  • train.tsv数据样式:

sentence    label
早餐不好,服务不到位,晚餐无西餐,早餐晚餐相同,房间条件不好,餐厅不分吸烟区.房间不分有无烟房.    0
去的时候 ,酒店大厅和餐厅在装修,感觉大厅有点挤.由于餐厅装修本来该享受的早饭,也没有享受(他们是8点开始每个房间送,但是我时间来不及了)不过前台服务员态度好!    1
有很长时间没有在西藏大厦住了,以前去北京在这里住的较多。这次住进来发现换了液晶电视,但网络不是很好,他们自己说是收费的原因造成的。其它还好。  1
非常好的地理位置,住的是豪华海景房,打开窗户就可以看见栈桥和海景。记得很早以前也住过,现在重新装修了。总的来说比较满意,以后还会住   1
交通很方便,房间小了一点,但是干净整洁,很有香港的特色,性价比较高,推荐一下哦 1
酒店的装修比较陈旧,房间的隔音,主要是卫生间的隔音非常差,只能算是一般的    0
酒店有点旧,房间比较小,但酒店的位子不错,就在海边,可以直接去游泳。8楼的海景打开窗户就是海。如果想住在热闹的地带,这里不是一个很好的选择,不过威海城市真的比较小,打车还是相当便宜的。晚上酒店门口出租车比较少。   1
位置很好,走路到文庙、清凉寺5分钟都用不了,周边公交车很多很方便,就是出租车不太爱去(老城区路窄爱堵车),因为是老宾馆所以设施要陈旧些,    1
酒店设备一般,套房里卧室的不能上网,要到客厅去。    0
  • train.tsv数据样式说明:
    • train.tsv中的数据内容共分为2列, 第一列数据代表具有感情色彩的评论文本; 第二列数据, 0或1, 代表每条文本数据是积极或者消极的评论, 0代表消极, 1代表积极.

3 获取标签数量分布

# 导入必备工具包
import seaborn as sns
import pandas as pd
import matplotlib.pyplot as plt
# 设置显示风格
plt.style.use('fivethirtyeight') # 分别读取训练tsv和验证tsv
train_data = pd.read_csv("data/cn_data/train.tsv", sep="\t")
valid_data = pd.read_csv("data/cn_data/dev.tsv", sep="\t")# 获得训练数据标签数量分布
sns.countplot("label", data=train_data)
plt.title("train_data")
plt.show()# 获取验证数据标签数量分布
sns.countplot("label", data=valid_data)
plt.title("valid_data")
plt.show()
  • 训练集标签数量分布:

  • 验证集标签数量分布:

  • 分析:
    • 在深度学习模型评估中, 我们一般使用ACC作为评估指标, 若想将ACC的基线定义在50%左右, 则需要我们的正负样本比例维持在1:1左右, 否则就要进行必要的数据增强或数据删减. 上图中训练和验证集正负样本都稍有不均衡, 可以进行一些数据增强.

4 获取句子长度分布

# 在训练数据中添加新的句子长度列, 每个元素的值都是对应的句子列的长度
train_data["sentence_length"] = list(map(lambda x: len(x), train_data["sentence"]))# 绘制句子长度列的数量分布图
sns.countplot("sentence_length", data=train_data)
# 主要关注count长度分布的纵坐标, 不需要绘制横坐标, 横坐标范围通过dist图进行查看
plt.xticks([])
plt.show()# 绘制dist长度分布图
sns.distplot(train_data["sentence_length"])# 主要关注dist长度分布横坐标, 不需要绘制纵坐标
plt.yticks([])
plt.show()# 在验证数据中添加新的句子长度列, 每个元素的值都是对应的句子列的长度
valid_data["sentence_length"] = list(map(lambda x: len(x), valid_data["sentence"]))# 绘制句子长度列的数量分布图
sns.countplot("sentence_length", data=valid_data)# 主要关注count长度分布的纵坐标, 不需要绘制横坐标, 横坐标范围通过dist图进行查看
plt.xticks([])
plt.show()# 绘制dist长度分布图
sns.distplot(valid_data["sentence_length"])# 主要关注dist长度分布横坐标, 不需要绘制纵坐标
plt.yticks([])
plt.show()
  • 训练集句子长度分布:

  • 验证集句子长度分布:

  • 分析:
    • 通过绘制句子长度分布图, 可以得知我们的语料中大部分句子长度的分布范围, 因为模型的输入要求为固定尺寸的张量,合理的长度范围对之后进行句子截断补齐(规范长度)起到关键的指导作用. 上图中大部分句子长度的范围大致为20-250之间.

5 获取正负样本长度散点分布

# 绘制训练集长度分布的散点图
sns.stripplot(y='sentence_length',x='label',data=train_data)
plt.show()# 绘制验证集长度分布的散点图
sns.stripplot(y='sentence_length',x='label',data=valid_data)
plt.show()
  • 训练集上正负样本的长度散点分布:

  • 验证集上正负样本的长度散点分布:

  • 分析:
    • 通过查看正负样本长度散点图, 可以有效定位异常点的出现位置, 帮助我们更准确进行人工语料审查. 上图中在训练集正样本中出现了异常点, 它的句子长度近3500左右, 需要我们人工审查.

6 获取不同词汇总数统计

# 导入jieba用于分词
# 导入chain方法用于扁平化列表
import jieba
from itertools import chain# 进行训练集的句子进行分词, 并统计出不同词汇的总数
train_vocab = set(chain(*map(lambda x: jieba.lcut(x), train_data["sentence"])))
print("训练集共包含不同词汇总数为:", len(train_vocab))# 进行验证集的句子进行分词, 并统计出不同词汇的总数
valid_vocab = set(chain(*map(lambda x: jieba.lcut(x), valid_data["sentence"])))
print("训练集共包含不同词汇总数为:", len(valid_vocab))
  • 输出效果:
训练集共包含不同词汇总数为: 12147
训练集共包含不同词汇总数为: 6857

7 获取训练集高频形容词词云

# 使用jieba中的词性标注功能
import jieba.posseg as psegdef get_a_list(text):"""用于获取形容词列表"""# 使用jieba的词性标注方法切分文本,获得具有词性属性flag和词汇属性word的对象, # 从而判断flag是否为形容词,来返回对应的词汇r = []for g in pseg.lcut(text):if g.flag == "a":r.append(g.word)return r# 导入绘制词云的工具包
from wordcloud import WordClouddef get_word_cloud(keywords_list):# 实例化绘制词云的类, 其中参数font_path是字体路径, 为了能够显示中文, # max_words指词云图像最多显示多少个词, background_color为背景颜色 wordcloud = WordCloud(font_path="./SimHei.ttf", max_words=100, background_color="white")# 将传入的列表转化成词云生成器需要的字符串形式keywords_string = " ".join(keywords_list)# 生成词云wordcloud.generate(keywords_string)# 绘制图像并显示plt.figure()plt.imshow(wordcloud, interpolation="bilinear")plt.axis("off")plt.show()# 获得训练集上正样本
p_train_data = train_data[train_data["label"]==1]["sentence"]# 对正样本的每个句子的形容词
train_p_a_vocab = chain(*map(lambda x: get_a_list(x), p_train_data))
#print(train_p_n_vocab)# 获得训练集上负样本
n_train_data = train_data[train_data["label"]==0]["sentence"]# 获取负样本的每个句子的形容词
train_n_a_vocab = chain(*map(lambda x: get_a_list(x), n_train_data))# 调用绘制词云函数
get_word_cloud(train_p_a_vocab)
get_word_cloud(train_n_a_vocab)
  • 训练集正样本形容词词云:

  • 训练集负样本形容词词云:

8 获取验证集形容词词云

# 获得验证集上正样本
p_valid_data = valid_data[valid_data["label"]==1]["sentence"]# 对正样本的每个句子的形容词
valid_p_a_vocab = chain(*map(lambda x: get_a_list(x), p_valid_data))
#print(train_p_n_vocab)# 获得验证集上负样本
n_valid_data = valid_data[valid_data["label"]==0]["sentence"]# 获取负样本的每个句子的形容词
valid_n_a_vocab = chain(*map(lambda x: get_a_list(x), n_valid_data))# 调用绘制词云函数
get_word_cloud(valid_p_a_vocab)
get_word_cloud(valid_n_a_vocab)
  • 验证集正样本形容词词云:

  • 验证集负样本形容词词云:

  • 分析:
    • 根据高频形容词词云显示, 我们可以对当前语料质量进行简单评估, 同时对违反语料标签含义的词汇进行人工审查和修正, 来保证绝大多数语料符合训练标准. 上图中的正样本大多数是褒义词, 而负样本大多数是贬义词, 基本符合要求, 但是负样本词云中也存在"便利"这样的褒义词, 因此可以人工进行审查.

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/509027.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

六、继承(一)

1 继承的引入 以往我们想分别实现描述学生、老师的类,可能会这样子做: class Student {string _name;string _number;int _tel;int id;string _address;int _age; }; class Teacher {string _name;int _level;int _tel;int id;string _address;int _ag…

前端面试练习24.3.2-3.3

HTMLCSS部分 一.说一说HTML的语义化 在我看来,它的语义化其实是为了便于机器来看的,当然,程序员在使用语义化标签时也可以使得代码更加易读,对于用户来说,这样有利于构建良好的网页结构,可以在优化用户体…

数据结构 第3章 栈、队列和数组(一轮习题总结)

第3章 栈、队列和数组 3.1 栈3.2 队列3.3 栈与队列的应用3.4 数组和特殊矩阵 3.1 栈(1 10 11 20) 3.2 队列(6 12 14 17) 3.3 栈与队列的应用(6 11) 3.4 数组和特殊矩阵 3.1 栈 T1 栈和队列具有相同的逻辑…

统信UOS及麒麟KYLINOS操作系统上如何切换键盘布局

原文链接:如何切换键盘布局 | 统信UOS | 麒麟KYLINOS Hello,大家好啊,最近有朋友在群里提到他的键盘输入“Y”会显示“Z”,输入“Z”会显示“Y”。这个问题听起来可能有些奇怪,但其实并不罕见。出现这种情况的原因&…

面试经典150题【51-60】

文章目录 面试经典150题【51-60】71.简化路径155.最小栈150.逆波兰表达式求值224.基本计算器141.环形链表2.两数相加21.合并两个有序链表138.随机链表的复制19.删除链表的倒数第N个节点82.删除链表中的重复元素II 面试经典150题【51-60】 71.简化路径 先用split(“/”)分开。然…

【软件设计师】通俗易懂的去了解算法的时间复杂度

🐓 时间复杂度 常用排序的时间复杂度 时间频度 算法需要花费的时间,和它语句执行的次数是成正比的,所以会把一个算法种语句执行次数称为语句频度和时间频度、记作T(n)。 定义 时间复杂度就是找到一个无限接近时间频度T(n)同数量级的函数&am…

基于springboot+vue实现校企合作项目管理系统项目【项目源码+论文说明】计算机毕业设计

基于springboot实现校企合作项目管理系统演示 摘要 这是一个计算机的时代,在计算机应用非常广泛的时代中,用计算机来完成对信息的处理有着非常好的使用效果。特别是针对学校而言亦是如此,通过在学校中的信息化建设,能够很好的提升…

S3---FPGA-A7板级电源硬件实战

视频链接 FPGA-A7板级电源硬件实战01_哔哩哔哩_bilibili FPGA-A7板级电源硬件实战 1、基于A7 板级的系统框图 2、基于A7 板级的电源设计细则 2.1、A7 FPGA功耗评估 Artix-7 FPGA电源有VCCINT, VCCBRAM, VCCAUX, VCCO, VMGTAVCC和VMGTAVTT。 2.1.1、A7 FPGA电源管脚 2.1.2…

http 协议深入介绍

一,http 相关概念 (一)关键名词 1,互联网 是网络的网络,是所有类型网络的母集 2,因特网 世界上最大的互联网网络。即因特网概念从属于互联网概念。习惯上,大家把连接在因特网上的计算机都成…

Matlab|基于Logistic函数负荷需求响应

目录 1 基于Logistic函数的负荷转移率模型 2 程序示例 3 效果图 4 下载链接 负荷需求响应模型种类较多,有电价型和激励型等类型,本次和大家分享一个基于Logistic函数的负荷转移率模型,该模型属于电价型,由于该方法使用的较少&a…

AGM CPLD (AGRV2K )的时钟(外部时钟和片上内部振荡器)

AGM CPLD (AGRV2K )的时钟(外部时钟和片上内部振荡器) 外部晶振 与 内部振荡器: mcu 和 cpld 联合编程时, 整颗芯片需要一颗外部晶振。 (芯片有内部振荡器, 但误差较大, 校准后 5%以内误差&…

二维码门楼牌管理系统技术服务:制作详解

文章目录 前言一、二维码门楼牌制作技术要求二、二维码门楼牌管理系统的优势与应用 前言 随着信息化时代的到来,二维码技术已广泛应用于各个领域。在城市管理中,二维码门楼牌管理系统的应用为城市管理带来了极大的便利。本文将详细探讨二维码门楼牌管理…