【大厂AI课学习笔记NO.63】模型的维护

说是模型的维护,其实这堂课都是在讲“在工业环境中开发和部署机器学习模型的流程”。

上图来自于我的笔记思维脑图,已经上传,要链接的访问的主页查看资源。

 

一路走来,我们学习了数据管理、模型学习、模型验证、模型部署等重要的步骤。

其中模型学习,包括模型选择和模型训练。

模型验证,要求:能够满足未知数据,泛化,合理处理,鲁棒性,满足需求;

在人工智能项目中,数据管理、模型学习、模型验证和模型部署是构建和运营机器学习模型的核心步骤。每个步骤都有其独特的作用,包含一系列关键技术、细分步骤、理念和工具方法。以下是对这些步骤的详细阐述:

数据管理

关键技术

  • 数据清洗:去除重复、错误或不完整的数据。
  • 数据转换:将数据转换成适合模型训练的格式。
  • 数据标注:为监督学习提供标签。
  • 数据存储:高效、安全地存储大量数据。

主要细分步骤

  1. 数据收集:从各种来源(如数据库、API、文件等)获取原始数据。
  2. 数据预处理:清洗、转换、标准化数据,以准备训练数据集。
  3. 数据分割:通常将数据分割为训练集、验证集和测试集。
  4. 数据版本控制:跟踪数据的变化,以便能够重现实验结果。

理念

  • 数据质量至关重要:高质量的数据是训练出高性能模型的基础。
  • 数据应代表实际场景:训练数据应尽可能反映模型将面对的真实世界情况。

工具和方法

  • 使用Pandas、SQL等工具进行数据清洗和转换。
  • 利用DVC、Git LFS等进行数据版本控制。
  • 应用数据湖、数据仓库等解决方案进行数据存储和管理。

模型学习

关键技术

  • 算法选择:根据问题类型(分类、回归、聚类等)选择合适的机器学习算法。
  • 超参数调优:调整模型参数以优化性能。
  • 损失函数:定义模型训练过程中的优化目标。
  • 优化器:选择如梯度下降等算法来最小化损失函数。

主要细分步骤

  1. 模型设计:基于业务理解和数据特征构建模型结构。
  2. 训练模型:使用训练数据集进行模型训练。
  3. 模型评估:在验证集上评估模型性能。
  4. 模型调整:根据评估结果调整模型结构或参数。

理念

  • 简洁性优先:在保持性能的同时,尽量简化模型以减少过拟合的风险和提高可解释性。
  • 持续学习:随着新数据的到来,模型应能够适应新的知识和模式。

工具和方法

  • 利用TensorFlow、PyTorch等深度学习框架进行模型设计和训练。
  • 使用Scikit-learn等机器学习库进行传统机器学习模型的构建。
  • 应用网格搜索、随机搜索或贝叶斯优化等方法进行超参数调优。

模型验证

关键技术

  • 交叉验证:评估模型在不同数据集上的泛化能力。
  • 性能指标:根据业务需求选择合适的评估指标(如准确率、召回率、F1分数等)。
  • 模型稳定性:检查模型在不同运行或不同数据分割下的性能一致性。
  • 偏差和方差分析:诊断模型性能不足的原因。

主要细分步骤

  1. 性能度量:在独立的测试集上评估模型性能。
  2. 错误分析:检查模型预测错误的案例以理解其局限性。
  3. 对比实验:与其他模型或基线进行比较以验证优越性。
  4. 模型解释性:使用如SHAP、LIME等工具理解模型决策依据。

理念

  • 信任但验证:即使模型在训练数据上表现良好,也需要在未见过的数据上进行验证。
  • 透明性和可解释性:模型应能够提供其决策的合理解释。

工具和方法

  • 使用模型评估库如MLflow、Neptune等进行实验跟踪和性能比较。
  • 应用统计测试来验证模型性能的提升是否显著。
  • 利用模型解释性工具进行模型决策的可视化和理解。

模型部署

关键技术

  • 模型序列化:将训练好的模型转换为可部署的格式。
  • 模型服务:构建API或Web服务以提供模型预测功能。
  • 容器化:使用Docker等技术将模型及其依赖项打包为容器。
  • 自动化部署:通过CI/CD流程自动将模型部署到生产环境。

主要细分步骤

  1. 模型导出:将模型从训练环境导出为可部署格式(如TensorFlow SavedModel、ONNX等)。
  2. 环境准备:设置生产环境的硬件和软件依赖。
  3. 部署模型:将模型部署到生产服务器或云平台上。
  4. 监控与维护:实时监控模型性能并进行必要的维护。

理念

  • 可靠性与稳定性至关重要:生产环境中的模型必须能够持续、稳定地提供服务。
  • 快速响应和弹性扩展:模型应能够迅速适应流量变化并弹性扩展资源。

工具和方法

  • 利用TensorFlow Serving、TorchServe或自定义服务框架进行模型服务化。
  • 使用Docker和Kubernetes进行容器化部署和管理。
  • 应用监控工具如Prometheus、Grafana以及日志分析工具进行实时性能监控和故障排查。

       

以上内容,在前面的笔记中,都有提到,欢迎关注,到我的主页查看。 

 

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/509264.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

分享经典、现代和前沿软件工程课程

随着信息技术的发展,软件已经深入到人类社会生产和生活的各个方面。软件工程是将工程化的方法运用到软件的开发、运行和维护之中,以达到提高软件质量,降低开发成本的目的。软件工程已经成为当今最活跃、最热门的学科之一。 本次软件工程MOOC课…

基于springboot+vue的智能学习平台系统

博主主页:猫头鹰源码 博主简介:Java领域优质创作者、CSDN博客专家、阿里云专家博主、公司架构师、全网粉丝5万、专注Java技术领域和毕业设计项目实战,欢迎高校老师\讲师\同行交流合作 ​主要内容:毕业设计(Javaweb项目|小程序|Pyt…

全新攻击面管理平台

首页大屏 内测阶段,免费试用一个月 有兴趣体验的师傅,来长亭云图极速版群里找我 py

撸chatgpt3.5 api backend-api 对接wxbot

功能是实现 web 转api 对接wxbot用, 直接上代码, 1.获取wss url def get_register_websocket():# 请求头url "https://chat.openai.com/backend-api/register-websocket"payload {}headers {Authorization: Bearer eyJhbGxxxxxxxxxxxxx…

扑克牌翻牌记忆小游戏源码

源码由HTMLCSSJS组成,双击html文件可以本地运行效果,也可以上传到服务器里面 效果预览 下载地址 https://www.qqmu.com/2296.html

《Trustzone/TEE/安全-实践版》介绍

第一章:课程说明和准备 课程介绍和说明 资料准备 为什么使用qemu_v8环境? 为什么选择香橙派开发板? optee qemu_v8环境展示 香橙派optee环境展示 第二章:Qemu环境搭建 ubuntu20.04的安装(virtualboxubuntu20.04) 搭建optee qem…

本地如何配置支付宝模拟支付场景并结合内网穿透实现公网环境调试开发?

文章目录 前言1. 下载当面付demo2. 修改配置文件3. 打包成web服务4. 局域网测试5. 内网穿透6. 测试公网访问7. 配置二级子域名8. 测试使用固定二级子域名访问 前言 在沙箱环境调试支付SDK的时候,往往沙箱环境部署在本地,局限性大,在沙箱环境…

spring cloud 之 Netflix Eureka

1、Eureka 简介 Eureka是Spring Cloud Netflix 微服务套件中的一个服务发现组件,本质上是一个基于REST的服务,主要用于AWS云来定位服务以实现中间层服务的负载均衡和故障转移,它的设计理念就是“注册中心”。 你可以认为它是一个存储服务地址信息的大本…

[Gitlab CI] 自动取消旧流水线

提交Commit触发新流水线 当某一分支开启Merge Request后只要提交一次commit就会自动创建一个新的流水线,此时之前的Pipeline不会被取消,经过下面的设置后可以实现自动取消旧流水线的功能。 ❗️通过提交(commit)触发的同一分支流…

B端:系统是否高端大气,全看工作台页面(海量案例图)

hello,我是贝格前端工场,之前提过一个B端界面优化的办法,其中一条就是要重视工作台页面,后来在多次的项目实践中验证了这个方法,本文讲清楚为什么工作台页面决定了整个系统的风格基调,欢迎评论交流&#xf…

Vue3和ElementPlus封装table组件

最近学习vue3.2并自己在写一个项目,然后发现好几个页面都是列表页,重复写table和column也是觉得累,学习的项目列表页不算多,要是公司项目就不一样了,所以就想着自己封装一个table组件,免去大量重复工作和co…

【图像版权】论文阅读:CRMW 图像隐写术+压缩算法

不可见水印 前言背景介绍ai大模型水印生成产物不可见水印CRMW 在保护深度神经网络模型知识产权方面与现有防御机制有何不同?使用图像隐写术和压缩算法为神经网络模型生成水印数据集有哪些优势?特征一致性训练如何发挥作用,将水印数据集嵌入到…