NLP_文本张量表示方法_2(代码示例)

目标

  • 了解什么是文本张量表示及其作用.
  • 文本张量表示的几种方法及其实现.

1 文本张量表示

  • 将一段文本使用张量进行表示,其中一般将词汇为表示成向量,称作词向量,再由各个词向量按顺序组成矩阵形成文本表示.

["人生", "该", "如何", "起头"]==># 每个词对应矩阵中的一个向量
[[1.32, 4,32, 0,32, 5.2],[3.1, 5.43, 0.34, 3.2],[3.21, 5.32, 2, 4.32],[2.54, 7.32, 5.12, 9.54]]
  • 文本张量表示的作用:

    • 将文本表示成张量(矩阵)形式,能够使语言文本可以作为计算机处理程序的输入,进行接下来一系列的解析工作.
  • 文本张量表示的方法:

    • one-hot编码
    • Word2vec
    • Word Embedding

2 one-hot词向量表示

  • 又称独热编码,将每个词表示成具有n个元素的向量,这个词向量中只有一个元素是1,其他元素都是0,不同词汇元素为0的位置不同,其中n的大小是整个语料中不同词汇的总数.

  • 举个例子:

    ["改变", "要", "如何", "起手"]`
    ==>[[1, 0, 0, 0],[0, 1, 0, 0],[0, 0, 1, 0],[0, 0, 0, 1]]
    

  • onehot编码实现:
    • 进行onehot编码:
    • # 导入用于对象保存与加载的joblib
      import joblib
      # 导入keras中的词汇映射器Tokenizer
      from keras.preprocessing.text import Tokenizer
      # 假定vocab为语料集所有不同词汇集合
      vocab = {"周杰伦", "陈奕迅", "王力宏", "李宗盛", "吴亦凡", "鹿晗"}
      # 实例化一个词汇映射器对象
      t = Tokenizer(num_words=None, char_level=False)
      # 使用映射器拟合现有文本数据
      t.fit_on_texts(vocab)for token in vocab:zero_list = [0]*len(vocab)# 使用映射器转化现有文本数据, 每个词汇对应从1开始的自然数# 返回样式如: [[2]], 取出其中的数字需要使用[0][0]token_index = t.texts_to_sequences([token])[0][0] - 1zero_list[token_index] = 1print(token, "的one-hot编码为:", zero_list)# 使用joblib工具保存映射器, 以便之后使用
      tokenizer_path = "./Tokenizer"
      joblib.dump(t, tokenizer_path)
      

    • 输出效果:
      鹿晗 的one-hot编码为: [1, 0, 0, 0, 0, 0]
      王力宏 的one-hot编码为: [0, 1, 0, 0, 0, 0]
      李宗盛 的one-hot编码为: [0, 0, 1, 0, 0, 0]
      陈奕迅 的one-hot编码为: [0, 0, 0, 1, 0, 0]
      周杰伦 的one-hot编码为: [0, 0, 0, 0, 1, 0]
      吴亦凡 的one-hot编码为: [0, 0, 0, 0, 0, 1]# 同时在当前目录生成Tokenizer文件, 以便之后使用

    • onehot编码器的使用:
      # 导入用于对象保存与加载的joblib
      # from sklearn.externals import joblib
      # 加载之前保存的Tokenizer, 实例化一个t对象
      t = joblib.load(tokenizer_path)# 编码token为"李宗盛"
      token = "李宗盛"
      # 使用t获得token_index
      token_index = t.texts_to_sequences([token])[0][0] - 1
      # 初始化一个zero_list
      zero_list = [0]*len(vocab)
      # 令zero_List的对应索引为1
      zero_list[token_index] = 1
      print(token, "的one-hot编码为:", zero_list) 

    • 输出效果:
李宗盛 的one-hot编码为: [1, 0, 0, 0, 0, 0]
  • one-hot编码的优劣势:

    • 优势:操作简单,容易理解.
    • 劣势:完全割裂了词与词之间的联系,而且在大语料集下,每个向量的长度过大,占据大量内存.

    • 正因为one-hot编码明显的劣势,这种编码方式被应用的地方越来越少,取而代之的是接下来我们要学习的稠密向量的表示方法word2vec和word embedding.

3 word2vec模型

3.1 模型介绍

  • word2vec是一种流行的将词汇表示成向量的无监督训练方法, 该过程将构建神经网络模型, 将网络参数作为词汇的向量表示, 它包含CBOW和skipgram两种训练模式.

  • CBOW(Continuous bag of words)模式:

    • 给定一段用于训练的文本语料, 再选定某段长度(窗口)作为研究对象, 使用上下文词汇预测目标词汇.

3.2 word2vec的训练和使用

  • 第一步: 获取训练数据
  • 第二步: 训练词向量
  • 第三步: 模型超参数设定
  • 第四步: 模型效果检验
  • 第五步: 模型的保存与重加载
1 获取训练数据

数据来源:http://mattmahoney.net/dc/enwik9.zip

在这里, 我们将研究英语维基百科的部分网页信息, 它的大小在300M左右。这些语料已经被准备好, 我们可以通过Matt Mahoney的网站下载。

注意:原始数据集已经放在/root/data/enwik9.zip,解压后数据为/root/data/enwik9,预处理后的数据为/root/data/fil9

  • 查看原始数据:
    $ head -10 data/enwik9# 原始数据将输出很多包含XML/HTML格式的内容, 这些内容并不是我们需要的
    <mediawiki xmlns="http://www.mediawiki.org/xml/export-0.3/" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://www.mediawiki.org/xml/export-0.3/ http://www.mediawiki.org/xml/export-0.3.xsd" version="0.3" xml:lang="en"><siteinfo><sitename>Wikipedia</sitename><base>http://en.wikipedia.org/wiki/Main_Page</base><generator>MediaWiki 1.6alpha</generator><case>first-letter</case><namespaces><namespace key="-2">Media</namespace><namespace key="-1">Special</namespace><namespace key="0" />

  • 原始数据处理:
# 使用wikifil.pl文件处理脚本来清除XML/HTML格式的内容
# perl wikifil.pl data/enwik9 > data/fil9 #该命令已经执行
  • 查看预处理后的数据:
# 查看前80个字符
head -c 80 data/fil9# 输出结果为由空格分割的单词anarchism originated as a term of abuse first used against early working class
2 训练词向量
# 代码运行在python解释器中
# 导入fasttext
>>> import fasttext
# 使用fasttext的train_unsupervised(无监督训练方法)进行词向量的训练
# 它的参数是数据集的持久化文件路径'data/fil9'# 注意,该行代码执行耗时很长
>>> model1 = fasttext.train_unsupervised('data/fil9') # 可以使用以下代码加载已经训练好的模型
>>> model = fasttext.load_model("data/fil9.bin")# 有效训练词汇量为124M, 共218316个单词
Read 124M words
Number of words:  218316
Number of labels: 0
Progress: 100.0% words/sec/thread:   53996 lr:  0.000000 loss:  0.734999 ETA:   0h 0m
3 查看单词对应的词向量
# 通过get_word_vector方法来获得指定词汇的词向量
>>> model.get_word_vector("the")array([-0.03087516,  0.09221972,  0.17660329,  0.17308897,  0.12863874,0.13912526, -0.09851588,  0.00739991,  0.37038437, -0.00845221,...-0.21184735, -0.05048715, -0.34571868,  0.23765688,  0.23726143],dtype=float32)
4 模型超参数设定
# 在训练词向量过程中, 我们可以设定很多常用超参数来调节我们的模型效果, 如:
# 无监督训练模式: 'skipgram' 或者 'cbow', 默认为'skipgram', 在实践中,skipgram模式在利用子词方面比cbow更好.
# 词嵌入维度dim: 默认为100, 但随着语料库的增大, 词嵌入的维度往往也要更大.
# 数据循环次数epoch: 默认为5, 但当你的数据集足够大, 可能不需要那么多次.
# 学习率lr: 默认为0.05, 根据经验, 建议选择[0.01,1]范围内.
# 使用的线程数thread: 默认为12个线程, 一般建议和你的cpu核数相同.>>> model = fasttext.train_unsupervised('data/fil9', "cbow", dim=300, epoch=1, lr=0.1, thread=8)Read 124M words
Number of words:  218316
Number of labels: 0
Progress: 100.0% words/sec/thread:   49523 lr:  0.000000 avg.loss:  1.777205 ETA:   0h 0m 0s
5 模型效果检验
# 检查单词向量质量的一种简单方法就是查看其邻近单词, 通过我们主观来判断这些邻近单词是否与目标单词相关来粗略评定模型效果好坏.# 查找"运动"的邻近单词, 我们可以发现"体育网", "运动汽车", "运动服"等. 
>>> model.get_nearest_neighbors('sports')[(0.8414610624313354, 'sportsnet'), (0.8134572505950928, 'sport'), (0.8100415468215942, 'sportscars'), (0.8021156787872314, 'sportsground'), (0.7889881134033203, 'sportswomen'), (0.7863013744354248, 'sportsplex'), (0.7786710262298584, 'sporty'), (0.7696356177330017, 'sportscar'), (0.7619683146476746, 'sportswear'), (0.7600985765457153, 'sportin')]# 查找"音乐"的邻近单词, 我们可以发现与音乐有关的词汇.
>>> model.get_nearest_neighbors('music')[(0.8908010125160217, 'emusic'), (0.8464668393135071, 'musicmoz'), (0.8444250822067261, 'musics'), (0.8113634586334229, 'allmusic'), (0.8106718063354492, 'musices'), (0.8049437999725342, 'musicam'), (0.8004694581031799, 'musicom'), (0.7952923774719238, 'muchmusic'), (0.7852965593338013, 'musicweb'), (0.7767147421836853, 'musico')]# 查找"小狗"的邻近单词, 我们可以发现与小狗有关的词汇.
>>> model.get_nearest_neighbors('dog')[(0.8456876873970032, 'catdog'), (0.7480780482292175, 'dogcow'), (0.7289096117019653, 'sleddog'), (0.7269964218139648, 'hotdog'), (0.7114801406860352, 'sheepdog'), (0.6947550773620605, 'dogo'), (0.6897546648979187, 'bodog'), (0.6621081829071045, 'maddog'), (0.6605004072189331, 'dogs'), (0.6398137211799622, 'dogpile')]
6 模型的保存与重加载
# 使用save_model保存模型
>>> model.save_model("fil9.bin")# 使用fasttext.load_model加载模型
>>> model = fasttext.load_model("fil9.bin")
>>> model.get_word_vector("the")array([-0.03087516,  0.09221972,  0.17660329,  0.17308897,  0.12863874,0.13912526, -0.09851588,  0.00739991,  0.37038437, -0.00845221,...-0.21184735, -0.05048715, -0.34571868,  0.23765688,  0.23726143],dtype=float32)

4 词嵌入word embedding介绍

  • 通过一定的方式将词汇映射到指定维度(一般是更高维度)的空间.
  • 广义的word embedding包括所有密集词汇向量的表示方法,如之前学习的word2vec, 即可认为是word embedding的一种.
  • 狭义的word embedding是指在神经网络中加入的embedding层, 对整个网络进行训练的同时产生的embedding矩阵(embedding层的参数), 这个embedding矩阵就是训练过程中所有输入词汇的向量表示组成的矩阵.

  • word embedding的可视化分析:

  • 通过使用tensorboard可视化嵌入的词向量.
import tensorflow as tf
import tensorboard as tb
tf.io.gfile = tb.compat.tensorflow_stub.io.gfile# 导入torch和tensorboard的摘要写入方法
import torch
import json
import fileinput
from torch.utils.tensorboard import SummaryWriter
# 实例化一个摘要写入对象
writer = SummaryWriter()# 随机初始化一个100x50的矩阵, 认为它是我们已经得到的词嵌入矩阵
# 代表100个词汇, 每个词汇被表示成50维的向量
embedded = torch.randn(100, 50)# 导入事先准备好的100个中文词汇文件, 形成meta列表原始词汇
meta = list(map(lambda x: x.strip(), fileinput.FileInput("./vocab100.csv")))
writer.add_embedding(embedded, metadata=meta)
writer.close()
  • 在终端启动tensorboard服务:
$ cd ~
$ tensorboard --logdir=runs --host 0.0.0.0# 通过http://192.168.88.161:6006访问浏览器可视化页面
  • 浏览器展示并可以使用右侧近邻词汇功能检验效果:

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/511093.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

TCPDump 使用教程

每次服务器网络不通的时候&#xff0c;总会听到一个声音&#xff0c;你去抓包啊&#xff0c;那这里就来介绍下TCPDump&#xff0c;一款强大的网络分析工具&#xff0c;可以捕获网络上的数据包&#xff0c;并进行分析。这款工具在网络管理员和安全专家中非常受欢迎。 一、安装 …

Java解决杨辉三角

Java解决杨辉三角 01 题目 给定一个非负整数 *numRows&#xff0c;*生成「杨辉三角」的前 numRows 行。 在「杨辉三角」中&#xff0c;每个数是它左上方和右上方的数的和。 示例 1: 输入: numRows 5 输出: [[1],[1,1],[1,2,1],[1,3,3,1],[1,4,6,4,1]]示例 2: 输入: numRo…

不同控制方式下的无人机二维码识别降落对比

无人机技术的快速发展正在推动众多行业的革新&#xff0c;从农业监测、灾害响应到城市规划和物流配送&#xff0c;无人机的应用前景无限广阔。随着应用场景的多样化&#xff0c;无人机精准降落成为一大挑战。基于PX4飞控固件和ROS系统的开源自主无人机平台Prometheus应运而生。…

15-注册中心-自研微服务框架

注册中心 前面我们实现了RPC&#xff0c;但是大家知道服务都是集群化部署的&#xff0c;那么客户端在连接服务端的时候&#xff0c;到底该选择哪一个服务器呢&#xff1f; 这时候我们就需要注册中心的帮助了。 1. nacos 1.1 注册服务 package registerimport ("github.c…

如何用Elementor创建WordPress会员网站

在下面的文章中&#xff0c;我们将向您展示如何使用Elementor和MemberPress在WordPress中轻松构建会员网站。这篇文章将涵盖WordPress会员网站设置过程、会员资格和受保护内容创建、重要页面和登录表单设计、电子邮件通知管理、报告等。 目录 什么是WordPress会员网站&#x…

「滚雪球学Java」:JDBC(章节汇总)

&#x1f3c6;本文收录于「滚雪球学Java」专栏&#xff0c;专业攻坚指数级提升&#xff0c;助你一臂之力&#xff0c;带你早日登顶&#x1f680;&#xff0c;欢迎大家关注&&收藏&#xff01;持续更新中&#xff0c;up&#xff01;up&#xff01;up&#xff01;&#xf…

【AI视野·今日NLP 自然语言处理论文速览 第八十期】Fri, 1 Mar 2024

AI视野今日CS.NLP 自然语言处理论文速览 Fri, 1 Mar 2024 Totally 67 papers &#x1f449;上期速览✈更多精彩请移步主页 Daily Computation and Language Papers Loose LIPS Sink Ships: Asking Questions in Battleship with Language-Informed Program Sampling Authors G…

S4---FPGA-K7板级原理图硬件实战

视频链接 FPGA-K7板级系统硬件实战01_哔哩哔哩_bilibili FPGA-K7板级原理图硬件实战 基于XC7K325TFFG900的FPGA硬件实战框图 基于XILINX 的KINTEX-7 芯片XC7K325FPGA的硬件平台&#xff0c;FPGA 开发板挂载了4 片512MB 的高速DDR3 SDRAM 芯片&#xff0c;另外板上带有一个SODIM…

[喵咪大数据]Presto查询引擎

如果大家正在按照笔者的教程尝试使用大数据组件还是之前有使用过相关的组件,大家会发现一个问题HIVE在负责的查询下调用Mapreduce会很慢,在这个场景下就涌现出很多查询引擎来优化,比如大家熟悉的Spark-SQL,Impala,kilin已经今天的主角Presto, Presto以速度和极强的扩展性取得了…

计网面试题整理上

1. 计算机网络的各层协议及作用&#xff1f; 计算机网络体系可以大致分为一下三种&#xff0c;OSI七层模型、TCP/IP四层模型和五层模型。 OSI七层模型&#xff1a;大而全&#xff0c;但是比较复杂、而且是先有了理论模型&#xff0c;没有实际应用。TCP/IP四层模型&#xff1a…

ABAP - 二代增强(Customer Exit)

二代增强是基于系统预留好的Function修改实现对标准功能拓展的方式二代增强分为4类&#xff1a; E类增强.&#xff1a;Function Exits&#xff1a;图中可以看到Function Exits以函数模块形式发布&#xff0c;使用 CALL CUSTOMER-FUNCTION 3位数字 ,3位数字是被调用的函数代码&…

【Docker】Windows11操作系统下安装、使用Docker保姆级教程

【Docker】Windows11操作系统下安装、使用Docker保姆级教程 大家好 我是寸铁&#x1f44a; 总结了一篇【Docker】Windows11操作系统下安装、使用Docker保姆级教程的文章✨ 喜欢的小伙伴可以点点关注 &#x1f49d; 前言 什么是 Docker&#xff1f; Docker 是一个开源平台&…