【MATLAB】 CEEMD信号分解+FFT傅里叶频谱变换组合算法

有意向获取代码,请转文末观看代码获取方式~

展示出图效果

1 CEEMD信号分解算法

CEEMD 分解又叫互补集合经验模态分解,英文全称为 Complementary Ensemble Empirical Mode Decomposition。

CEEMD是对EEMD的改进,它在EEMD的基础上引入了一个自适应的扩展方法,可以更好地解决EMD/EEMD中存在的模态混叠问题。CEEMD的主要步骤如下:

  1. 对原始信号进行若干次随机噪声扰动,得到多个噪声扰动数据集。

  2. 对每个噪声扰动数据集进行EMD分解,得到多个EMD分解集合。

  3. 对于每个EMD分解集合,通过一个自适应的扩展方法,将每个局部模态函数分配到它所属的固有模态函数上,消除模态混叠的影响。

  4. 将每个扩展后的 EMD 分解集合的对应分量进行平均,得到最终的 CEEMD 分解结果。 CEEMD 分解具有良好的局部性和自适应性,能够更准确地分解信号,同时避免了 EEMD 中的模态混叠问题。因此,CEEMD 在信号处理、图像处理和模式识别等领域也得到了广泛的应用。

要想在 MATLAB 中使用 EMD 分解首先要安装 EMD 分解的 MATLAB 工具包。

关于简短的代码视频教程均可关注B站、小红书、知乎同名账号(Lwcah)观看教程~

EMD 工具包的安装:在 MATLAB 打开 package_emd 文件夹,运行 install_emd. M 以及 index_emd. M 两个函数如下图所示即可完成工具包的安装。

MATLAB 信号分解第三期-CEEMD:

信号分解全家桶详情请参见:

2 FFT傅里叶频谱变换算法

傅里叶变换是一种数学方法,用于将一个信号分解成一系列正弦和余弦函数的和,从而更好地理解和处理信号。傅里叶变换在信号处理领域有着广泛的应用,包括音频处理、图像处理等。 具体来说,傅里叶变换的步骤如下:

  1. 给定一个连续时间域函数f(t),其中t为时间。

  2. 对f(t)进行傅里叶变换,得到它的频率域表示F(ω),其中ω为角频率。

  3. F(ω)表示了f(t)中所有频率分量的幅度和相位信息。

  4. 将F(ω)分解成一系列正弦和余弦函数的和,即: F(ω) = ∑[a(k)cos(kω) + b(k)sin(kω)] 其中,k为频率分量的序号,a(k)和b(k)分别为对应的正弦和余弦函数的系数。 傅里叶变换的优点是可以将时间域中的信号转换成频率域中的信号,从而更好地理解信号的频率分量和周期性特征,同时也方便进行一些信号处理任务,例如滤波、降噪等。缺点是傅里叶变换需要对整个信号进行处理,计算量较大,在实时处理等场景下可能会存在较大的延迟。

MATLAB | 频谱分析算法 | 傅里叶变换 开源 MATLAB 代码请转:

MATLAB | 9种频谱分析算法全家桶详情请参见:

3 CEEMD信号分解+FFT傅里叶频谱变换组合算法

如下为简短的视频操作教程。

【MATLAB 】 CEEMD信号分解+FFT傅里叶频谱变换组合算法请转:

【MATLAB 】信号分解+FFT傅里叶频谱变换组合算法全家桶详情请参见:

关于代码有任何疑问,可以一起探讨科研,写作,代码等诸多学术问题,我们一起进步~


代码见附件

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/511329.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

【数据结构】复杂度详解

目录 (一)算法的复杂度 (二)时间复杂度 (1)练笔解释: i,示例1 ii,示例2 iii,二分查找 iv,斐波那契 (三)空间复杂度…

AI-数学-高中-34概率-古典概率模型

原作者视频:【概率】【一数辞典】3古典概型_哔哩哔哩_bilibili 等可能性:每个样本点出现的可能性是相同的。 随机事件A的发生事件A的样本点数k / 样板空间总样本点数n。 示例1: 示例2:

Vue.js的单向数据流:让你的应用更清晰、更可控

🤍 前端开发工程师、技术日更博主、已过CET6 🍨 阿珊和她的猫_CSDN博客专家、23年度博客之星前端领域TOP1 🕠 牛客高级专题作者、打造专栏《前端面试必备》 、《2024面试高频手撕题》 🍚 蓝桥云课签约作者、上架课程《Vue.js 和 E…

Linux 操作系统概述

GNU计划 GNU --"GNUs Not UNIX" 建立一个自由、开放的UNIX操作系统(Free UNIX) GNU 通用公共许可证(General Public License,GPL) ”四项基本自由“ 按照自己的意愿自由地运行该软件自由地学习并根据…

掘根宝典之C语言字符串输入函数(gets(),fgets(),get_s())

字符串输入前的注意事项 如果想把一个字符串读入程序,首先必须预留该字符串的空间,然后用输入函数获取该字符串 这意味着必须要为字符串分配足够的空间。 不要指望计算机在读取字符串时顺便计算它的长度,然后再分配空间(计算机不会这样做&a…

Carbondata编译适配Spark3

背景 当前carbondata版本2.3.1-rc1中项目源码适配的spark版本最高为3.1,我们需要进行spark3.3版本的编译适配。 原始编译 linux系统下载源码后,安装maven3.6.3,然后执行: mvn -DskipTests -Pspark-3.1 clean package会遇到一些网络问题&a…

阿里云服务器2核4G租用价格_2核4G支持人数新能测评

阿里云2核4G服务器多少钱一年?2核4G配置1个月多少钱?2核4G服务器30元3个月、轻量应用服务器2核4G4M带宽165元一年、企业用户2核4G5M带宽199元一年。可以在阿里云CLUB中心查看 aliyun.club 当前最新2核4G服务器精准报价、优惠券和活动信息。 阿里云官方2…

Python实现CCI工具判断信号:股票技术分析的工具系列(5)

Python实现CCI工具判断信号:股票技术分析的工具系列(5) 介绍算法解释 代码rolling函数介绍完整代码data代码CCI.py 介绍 在股票技术分析中,CCI (商品路径指标)是一种常用的技术指标,用于衡量股价是否处于超…

算法沉淀——动态规划之完全背包问题(leetcode真题剖析)

算法沉淀——动态规划之完全背包问题 01.【模板】完全背包02.零钱兑换03.零钱兑换 II04.完全平方数 完全背包问题是背包问题的一种变体,与01背包问题不同,它允许你对每种物品进行多次选择。具体来说,给定一个固定容量的背包,一组物…

2.3 shl,shr,inc,dec,xchg,neg指令,中断int指令

汇编语言 1. shl左移指令 shl是逻辑左移指令,它的功能是将一个reg或内存单元中的数据向左移位;将最后移出的一位写入cf中;最低位用0补充shl:shift left例如:0100 1000b 往左移一位,变成10010000b&#xf…

Full-RNS CKKS

参考文献: [HS13] Halevi S, Shoup V. Design and implementation of a homomorphic-encryption library[J]. IBM Research (Manuscript), 2013, 6(12-15): 8-36.[BEHZ16] Bajard J C, Eynard J, Hasan M A, et al. A full RNS variant of FV like somewhat homomo…

【比较mybatis、lazy、sqltoy、mybatis-flex、easy-query操作数据】操作批量新增、分页查询(三)

orm框架使用性能比较 比较mybatis、lazy、sqltoy、mybatis-flex、easy-query操作数据 环境: idea jdk17 spring boot 3.0.7 mysql 8.0测试条件常规对象 orm 框架是否支持xml是否支持 Lambda对比版本mybatis☑️☑️3.5.4sqltoy☑️☑️5.2.98lazy✖️☑️1.2.4…