从零开始写 Docker(四)---使用 pivotRoot 切换 rootfs 实现文件系统隔离

change-rootfs-by-pivot-root.png

本文为从零开始写 Docker 系列第四篇,在mydocker run 基础上使用 pivotRoot 系统调用切换 rootfs 实现容器和宿主机之间的文件系统隔离。


完整代码见:https://github.com/lixd/mydocker
欢迎 Star


推荐阅读以下文章对 docker 基本实现有一个大致认识:

  • 核心原理:深入理解 Docker 核心原理:Namespace、Cgroups 和 Rootfs
  • 基于 namespace 的视图隔离:探索 Linux Namespace:Docker 隔离的神奇背后
  • 基于 cgroups 的资源限制
    • 初探 Linux Cgroups:资源控制的奇妙世界
    • 深入剖析 Linux Cgroups 子系统:资源精细管理
    • Docker 与 Linux Cgroups:资源隔离的魔法之旅
  • 基于 overlayfs 的文件系统:Docker 魔法解密:探索 UnionFS 与 OverlayFS
  • 基于 veth pair、bridge、iptables 等等技术的 Docker 网络:揭秘 Docker 网络:手动实现 Docker 桥接网络

开发环境如下:

root@mydocker:~# lsb_release -a
No LSB modules are available.
Distributor ID:	Ubuntu
Description:	Ubuntu 20.04.2 LTS
Release:	20.04
Codename:	focal
root@mydocker:~# uname -r
5.4.0-74-generic

注意:需要使用 root 用户


如果你对云原生技术充满好奇,想要深入了解更多相关的文章和资讯,欢迎关注微信公众号。

搜索公众号【探索云原生】即可订阅


1. 概述

前面几节中,我们通过 NamespaceCgroups 技术创建了一个简单的容器,实现了视图隔离和资源限制。

但是大家应该可以发现,容器内的目录还是当前运行程序的宿主机目录,而且如果运行一下 mount 命令可以看到继承自父进程的所有挂载点。

这貌似和平常使用的容器表现不同

因为这里缺少了镜像这么一个重要的特性。

Docker 镜像可以说是一项伟大的创举,它使得容器传递和迁移更加简单,那么这一节会做一个简单的镜像,让容器跑在有镜像的环境中。

即:本章会为我们切换容器的 rootfs,以实现文件系统的隔离

2. 准备 rootfs

Docker 镜像包含了文件系统,所以可以直接运行,我们这里就先弄个简单的,直接将某个镜像中的所有内容作为我们的 rootfs 进行挂载。

即:先在宿主机上某一个目录上准备一个精简的文件系统,然后容器运行时挂载这个目录作为 rootfs

首先使用一个最精简的镜像 busybox 来作为我们的文件系统。

busybox 是一个集合了非常多 UNIX 工具的箱子,它可以提供非常多在 UNIX 环境下经常使用的命令,可以说 busybox 提供了一个非常完整而且小巧的系统。

因此我们先使用它来作为第一个容器内运行的文件系统。

获得 busybox 文件系统的 rootfs 很简单,可以使用 docker export 将一个镜像打成一个 tar包,并解压,解压目录即可作为文件系统使用

首先拉取镜像

docker pull busybox

然后使用该镜像启动一个容器,并用 export 命令将其导出成一个 tar 包

# 执行一个交互式命令,让容器能一直后台运行
docker run -d busybox top
# 拿到刚创建的容器的 Id
containerId=$(docker ps --filter "ancestor=busybox:latest"|grep -v IMAGE|awk '{print $1}')
echo "containerId" $containerId
# export 从容器导出
docker export -o busybox.tar $containerId

最后将 tar 包解压

mkdir busybox
tar -xvf busybox.tar -C busybox/

这样就得到了 busybox 文件系统的 rootfs ,可以把这个作为我们的文件系统使用。

这里的 rootfs 指解压得到的 busybox 目录

busybox 中的内容大概是这样的:

[root@docker ~]# ls -l busybox
total 16
drwxr-xr-x 2 root      root      12288 Dec 29  2021 bin
drwxr-xr-x 4 root      root         43 Jan 12 03:17 dev
drwxr-xr-x 3 root      root        139 Jan 12 03:17 etc
drwxr-xr-x 2 nfsnobody nfsnobody     6 Dec 29  2021 home
drwxr-xr-x 2 root      root          6 Jan 12 03:17 proc
drwx------ 2 root      root          6 Dec 29  2021 root
drwxr-xr-x 2 root      root          6 Jan 12 03:17 sys
drwxrwxrwt 2 root      root          6 Dec 29  2021 tmp
drwxr-xr-x 3 root      root         18 Dec 29  2021 usr
drwxr-xr-x 4 root      root         30 Dec 29  2021 var

可以看到,内容和一个完整的文件系统基本是一模一样的。

注意:rootfs 只是一个操作系统所包含的文件、配置和目录,并不包括操作系统内核

在 Linux 操作系统中,这两部分是分开存放的,操作系统只有在开机启动时才会加载指定版本的内核镜像。

3. 挂载 rootfs

把之前的 busybox rootfs 移动到/root/busybox 目录下备用。

实现原理

使用pivot_root 系统调用来切换整个系统的 rootfs,配合上 /root/busybox 来实现一个类似镜像的功能。

pivot_root 是一个系统调用,主要功能是去改变当前的 root 文件系统

原型如下:

#include <unistd.h>int pivot_root(const char *new_root, const char *put_old);
  • new_root:新的根文件系统的路径。
  • put_old:将原根文件系统移到的目录。

使用 pivot_root 系统调用后,原先的根文件系统会被移到 put_old 指定的目录,而新的根文件系统会变为 new_root 指定的目录。这样,当前进程就可以在新的根文件系统中执行操作。

注意:new_root 和 put_old 不能同时存在当前 root 的同一个文件系统中。

pivotroot 和 chroot 有什么区别?

  • pivot_root 是把整个系统切换到一个新的 root 目录,会移除对之前 root 文件系统的依赖,这样你就能够 umount 原先的 root 文件系统。

  • 而 chroot 是针对某个进程,系统的其他部分依旧运行于老的 root 目录中。

具体实现

具体实现如下:

/*
*
Init 挂载点
*/
func setUpMount() {pwd, err := os.Getwd()if err != nil {log.Errorf("Get current location error %v", err)return}log.Infof("Current location is %s", pwd)// systemd 加入linux之后, mount namespace 就变成 shared by default, 所以你必须显示// 声明你要这个新的mount namespace独立。// 如果不先做 private mount,会导致挂载事件外泄,后续执行 pivotRoot 会出现 invalid argument 错误err = syscall.Mount("", "/", "", syscall.MS_PRIVATE|syscall.MS_REC, "")err = pivotRoot(pwd)if err != nil {log.Errorf("pivotRoot failed,detail: %v", err)return}// mount /procdefaultMountFlags := syscall.MS_NOEXEC | syscall.MS_NOSUID | syscall.MS_NODEV_ = syscall.Mount("proc", "/proc", "proc", uintptr(defaultMountFlags), "")// 由于前面 pivotRoot 切换了 rootfs,因此这里重新 mount 一下 /dev 目录// tmpfs 是基于 件系 使用 RAM、swap 分区来存储。// 不挂载 /dev,会导致容器内部无法访问和使用许多设备,这可能导致系统无法正常工作syscall.Mount("tmpfs", "/dev", "tmpfs", syscall.MS_NOSUID|syscall.MS_STRICTATIME, "mode=755")
}func pivotRoot(root string) error {/**NOTE:PivotRoot调用有限制,newRoot和oldRoot不能在同一个文件系统下。因此,为了使当前root的老root和新root不在同一个文件系统下,这里把root重新mount了一次。bind mount是把相同的内容换了一个挂载点的挂载方法*/if err := syscall.Mount(root, root, "bind", syscall.MS_BIND|syscall.MS_REC, ""); err != nil {return errors.Wrap(err, "mount rootfs to itself")}// 创建 rootfs/.pivot_root 目录用于存储 old_rootpivotDir := filepath.Join(root, ".pivot_root")if err := os.Mkdir(pivotDir, 0777); err != nil {return err}// 执行pivot_root调用,将系统rootfs切换到新的rootfs,// PivotRoot调用会把 old_root挂载到pivotDir,也就是rootfs/.pivot_root,挂载点现在依然可以在mount命令中看到if err := syscall.PivotRoot(root, pivotDir); err != nil {return errors.WithMessagef(err, "pivotRoot failed,new_root:%v old_put:%v", root, pivotDir)}// 修改当前的工作目录到根目录if err := syscall.Chdir("/"); err != nil {return errors.WithMessage(err, "chdir to / failed")}// 最后再把old_root umount了,即 umount rootfs/.pivot_root// 由于当前已经是在 rootfs 下了,就不能再用上面的rootfs/.pivot_root这个路径了,现在直接用/.pivot_root这个路径即可pivotDir = filepath.Join("/", ".pivot_root")if err := syscall.Unmount(pivotDir, syscall.MNT_DETACH); err != nil {return errors.WithMessage(err, "unmount pivot_root dir")}// 删除临时文件夹return os.Remove(pivotDir)
}

然后再 build cmd 的时候指定:

func NewParentProcess(tty bool) (*exec.Cmd, *os.File) {cmd := exec.Command("/proc/self/exe", "init")// .. 省略其他代码// 指定 cmd 的工作目录为我们前面准备好的用于存放busybox rootfs的目录cmd.Dir = "/root/busybox"return cmd, writePipe
}

到此这一小节就完成了,测试一下。

4. 测试

测试比较简单,只需要执行 ls 命令,即可根据输出内容确定文件系统是否切换了。

root@mydocker:~/feat-rootfs/mydocker# go build .
root@mydocker:~/feat-rootfs/mydocker# ./mydocker run -it  /bin/ls
{"level":"info","msg":"resConf:\u0026{ 0  }","time":"2024-01-12T16:19:32+08:00"}
{"level":"info","msg":"command all is /bin/ls","time":"2024-01-12T16:19:32+08:00"}
{"level":"info","msg":"init come on","time":"2024-01-12T16:19:32+08:00"}
{"level":"info","msg":"Current location is /root/busybox","time":"2024-01-12T16:19:32+08:00"}
{"level":"info","msg":"Find path /bin/ls","time":"2024-01-12T16:19:32+08:00"}
bin   dev   etc   home  proc  root  sys   tmp   usr   var

可以看到,现在打印出来的就是/root/busybox 目录下的内容了,说明我们的 rootfs 切换完成。


如果你对云原生技术充满好奇,想要深入了解更多相关的文章和资讯,欢迎关注微信公众号。

搜索公众号【探索云原生】即可订阅


5.小结

本章核心如下:

  • 准备 rootfs:将运行中的 busybox 容器导出并解压后作为 rootfs
  • 挂载 rootfs:使用pivotRoot 系统调用,将前面准备好的目录作为容器的 rootfs 使用

在切换 rootfs 之后,容器就实现了和宿主机的文件系统隔离。

本章使用 pivotRoot 实现文件系统隔离,加上前面基于 Namespace 实现的视图隔离,基于 Cgroups 实现的资源限制,至此我们已经实现了一个 Docker 容器的几大核心功能。


完整代码见:https://github.com/lixd/mydocker
欢迎 Star

相关代码见 feat-rootfs 分支,测试脚本如下:

需要提前在 /root/busybox 目录准备好 rootfs,具体看本文第二节。

# 克隆代码
git clone -b feat-rootfs https://github.com/lixd/mydocker.git
cd mydocker
# 拉取依赖并编译
go mod tidy
go build .
# 测试 查看文件系统是否变化
./mydocker run -it  /bin/ls

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/511843.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

【力扣精选算法100道】——存在重复元素 1 or 2 (哈希)

目录 &#x1f6a9;存在重复元素1 &#x1f388;了解题意 &#x1f388;算法原理 &#x1f388;实现代码 &#x1f6a9;存在重复元素2 &#x1f388;了解题意 &#x1f388;算法原理 &#x1f388;代码实现 217. 存在重复元素 - 力扣&#xff08;LeetCode&#xff09; …

【机器学习】包裹式特征选择之递归特征添加法

&#x1f388;个人主页&#xff1a;豌豆射手^ &#x1f389;欢迎 &#x1f44d;点赞✍评论⭐收藏 &#x1f917;收录专栏&#xff1a;机器学习 &#x1f91d;希望本文对您有所裨益&#xff0c;如有不足之处&#xff0c;欢迎在评论区提出指正&#xff0c;让我们共同学习、交流进…

基于springboot+vue的多媒体素材库的开发与应用系统

博主主页&#xff1a;猫头鹰源码 博主简介&#xff1a;Java领域优质创作者、CSDN博客专家、阿里云专家博主、公司架构师、全网粉丝5万、专注Java技术领域和毕业设计项目实战&#xff0c;欢迎高校老师\讲师\同行交流合作 ​主要内容&#xff1a;毕业设计(Javaweb项目|小程序|Pyt…

Hack The Box-Perfection

总体思路 端口扫描->SSTI RCE->db文件泄露->hashcat破解密码 信息收集&端口利用 nmap -sV -sC -A 10.10.11.253目标只开放了22和80端口&#xff0c;先进行目录扫描和子域名探测 dirsearch -u 10.10.11.253 ffuf -c -u http://pefection.htb/ -H "Host: F…

Golang 程序启动原理详解

一.编译 go源代码首先要通过 go build 编译为可执行文件,然后去机器上直接执行的&#xff0c;在 linux 平台上为 ELF 格式的可执行文件&#xff0c;linux 能直接执行这个文件,而编译阶段会经过编译器、汇编器、链接器三个过程最终生成可执行文件 编译器&#xff1a;*.go 源码通…

网络基础(二)

目录 再谈"协议" 序列化 JSON 网络版计算器 HTTP协议 认识URL urlencode和urldecode HTTP协议格式 telnet指令 stat函数 struct stat类型 stringstream类型 wget指令 HTTP的方法 HTTP的状态码 传输层 再谈端口号 端口号范围划分 认识知名端口号(W…

[SpringCloud] OpenFeign核心架构原理 (二)

文章目录 1.Feign核心运行原理分析1.1 动态代理生成原理1.2 一次Feign的Http调用执行过程 1.Feign核心运行原理分析 动态代理生成原理。一次Feign的Http调用执行过程。 1.1 动态代理生成原理 通过Feign.builder().target(xx)获取到动态代理的。 调用ReflectiveFeign的newInst…

Python数据分析案例38——我国个人工作总收入影响因素分析

案例背景 偶然之间找到了CSFP(中国家庭追踪调查)的数据集&#xff0c;一个很全的家庭调查数据集。所以就想对大家现在最关心的工资和其影响因素做一点分析。 得到的结论还挺有价值的&#xff0c;有符合逻辑的&#xff0c;也有反直觉的。 数据来源 CFPS由北京大学中国社会科学…

【XR806开发板试用】Console流程解析以及添加自定义指令

写在前面的话 基于串口的指令调试总是作为基础功能出现在各个项目中。而这一小小的功能却已经包括了中断注册&#xff0c;回调函数&#xff0c;互斥量等嵌入式系统基本的软件逻辑。本文将从以下两个方面介绍XR806 SDK中Console系统。 Console初始化流程添加自定义指令 Conso…

文献阅读--Pulse-Width Modulation

《Dynamics and Control of Switched Electronic Systems》Jian Sun – Chapter 2 《Pulse-Width Modulation》 说明&#xff1a; 文献中的PWM是作为电控系统中基本控制信号去介绍的&#xff0c;但文中对PWM信号的数学证明是同样适用于通信领域的脉宽调制PDM的&#xff0c;文献…

LLM春招准备(1)

llm排序 GPT4V GPT-4V可以很好地理解直接绘制在图像上的视觉指示。它可以直接识别叠加在图像上的不同类型的视觉标记作为指针&#xff0c;例如圆形、方框和手绘&#xff08;见下图&#xff09;。虽然GPT-4V能够直接理解坐标&#xff0c;但相比于仅文本坐标&#xff0c;GPT-4V在…

js形参传递特殊字符

在前端我们给其他页面传值或者传数据到后台的时候&#xff0c;字符串经常将一些特殊符号识别成字符集。这种情况下会将数据打断或者打乱&#xff0c;比如字符串里面包含*/&这些符号的时候就会错误。 我们可以通过将字符中的特殊字符替换成十六进制的字符&#xff0c;一些特…