3.有效的括号
给定一个只包括 '('
,')'
,'{'
,'}'
,'['
,']'
的字符串 s
,判断字符串是否有效。
有效字符串需满足:
- 左括号必须用相同类型的右括号闭合。
- 左括号必须以正确的顺序闭合。
- 每个右括号都有一个对应的相同类型的左括号。
示例 1:
输入:s = "()"
输出:true
示例 2:
输入:s = "()[]{}"
输出:true
示例 3:
输入:s = "(]"
输出:false
提示:
1 <= s.length <= 104
s
仅由括号'()[]{}'
组成
思路
class Solution {
public:bool isValid(string s) {//"{[]}"这种情况就不行,下面的代码只符合(),[],{}这三种情况for (int i = 0,j = 1; j < s.size(); i+=2,j+=2){int sub = s[j] - s[i];if (!(sub > 0 && sub < 3)) {return false;}}return true;//}
};
括号匹配是使用栈解决的经典问题。由于栈结构的特殊性,非常适合做对称匹配类的题目。
编译器在 词法分析的过程中处理括号、花括号等这个符号的逻辑,也是使用了栈这种数据结构。
linux系统中,cd这个进入目录的命令也是栈的应用。
有的同学经常会想学的这些数据结构有什么用,也开发不了什么软件,大多数同学说的软件应该都是可视化的软件例如APP、网站之类的,那都是非常上层的应用了,底层很多功能的实现都是基础的数据结构和算法。
所以数据结构与算法的应用往往隐藏在我们看不到的地方!
首先要弄清楚,字符串里的括号不匹配有几种情况。
建议在写代码之前要分析好有哪几种不匹配的情况,如果不在动手之前分析好,写出的代码也会有很多问题。
先来分析一下 这里有三种不匹配的情况,
- 第一种情况,字符串里左方向的括号多余了 ,所以不匹配。
- 第二种情况,括号没有多余,但是 括号的类型没有匹配上。
- 第三种情况,字符串里右方向的括号多余了,所以不匹配。
我们的代码只要覆盖了这三种不匹配的情况,就不会出问题,可以看出 动手之前分析好题目的重要性。
动画如下:
第一种情况:已经遍历完了字符串,但是栈不为空,说明有相应的左括号没有右括号来匹配,所以return false
第二种情况:遍历字符串匹配的过程中,发现栈里没有要匹配的字符。所以return false
第三种情况:遍历字符串匹配的过程中,栈已经为空了,没有匹配的字符了,说明右括号没有找到对应的左括号return false
那么什么时候说明左括号和右括号全都匹配了呢,就是字符串遍历完之后,栈是空的,就说明全都匹配了。
#include<string>
#include<iostream>
#include<stack>
using namespace std;class Solution {
public:bool isValid(string s) {if (s.size() % 2 != 0) return false;// 如果s的长度为奇数,一定不符合要求stack<char> st;//声明栈for (int i = 0; i < s.size(); i++){//括号[],{},()的左边起始情况只有3种:(,{,[if (s[i] == '(') st.push(')');else if (s[i] == '{') st.push('}');else if ( s[i] == '[') st.push(']');//右边")} ["的不符合情况,st不进行入栈操作;// 第三种情况:遍历字符串匹配的过程中,栈已经为空了,没有匹配的字符了,说明右括号没有找到对应的左括号 return false// 第二种情况:遍历字符串匹配的过程中,发现栈里没有我们要匹配的字符。所以return falseelse if (st.empty() || st.top() != s[i]) {//return false;}else{st.pop();//相等,st移除栈顶元素}}// 第一种情况:此时我们已经遍历完了字符串,但是栈不为空,说明有相应的左括号没有右括号来匹配,所以return false,否则就return truereturn st.empty();}
};
- 时间复杂度: O(n)
- 空间复杂度: O(n)
总结
1.括号匹配是使用栈解决的经典问题。由于栈结构的特殊性,非常适合做对称匹配类的题目。匹配问题都是栈的强项
2.在入栈的时候就进行了判断应该入的是括号右边的哪个符号:“}” “]” “)”;方便后面做比较。
4.删除字符串中的所有相邻重复项
给出由小写字母组成的字符串 S
,重复项删除操作会选择两个相邻且相同的字母,并删除它们。
在 S 上反复执行重复项删除操作,直到无法继续删除。
在完成所有重复项删除操作后返回最终的字符串。答案保证唯一。
示例:
输入:"abbaca"
输出:"ca"
解释:
例如,在 "abbaca" 中,我们可以删除 "bb" 由于两字母相邻且相同,这是此时唯一可以执行删除操作的重复项。之后我们得到字符串 "aaca",其中又只有 "aa" 可以执行重复项删除操作,所以最后的字符串为 "ca"。
提示:
1 <= S.length <= 20000
S
仅由小写英文字母组成。
思路
有效的括号 是匹配左右括号,本题是匹配相邻元素,最后都是做消除的操作。
在删除相邻重复项的时候,其实就是要知道当前遍历的这个元素,我们在前一位是不是遍历过一样数值的元素,那么如何记录前面遍历过的元素呢?
所以就是用栈来存放,那么栈的目的,就是存放遍历过的元素,当遍历当前的这个元素的时候,去栈里看一下我们是不是遍历过相同数值的相邻元素。
#include<string>
#include<iostream>
#include<stack>
using namespace std;class Solution {
public:string removeDuplicates(string s) {stack<char> st;string res = "";for (int i = 0; i < s.size(); i++){if (!st.empty() && s[i] == st.top() ) {//注意这里的先后顺序,必须先判断是否为空st.pop();}else{st.push(s[i]);}}while (!st.empty())// 将栈中元素放到result字符串汇总,但这里的顺序发生了变化{res += st.top();st.pop();}reverse(res.begin(), res.end());// 此时字符串需要反转一下cout << res << endl;return res;}
};int main() {Solution solute;solute.removeDuplicates("abbaca");system("pause");return 0;
}
- 时间复杂度: O(n)
- 空间复杂度: O(n)
当然可以拿字符串直接作为栈,这样省去了栈还要转为字符串的操作。
class Solution {
public:string removeDuplicates(string S) {string result;for(char s : S) {if(result.empty() || result.back() != s) {result.push_back(s);}else {result.pop_back();}}return result;}
};
- 时间复杂度: O(n)
- 空间复杂度: O(1),返回值不计空间复杂度
总结
1.string字符串的result.push_back(s);
result.pop_back();
尾部添加、删除元素操作
2.没思路,但看了后又比较简单。最初想用双指针来做,就比较复杂。
class Solution {//双指针public String removeDuplicates(String s) {char[] ch = s.toCharArray();int fast = 0;int slow = 0;while(fast < s.length()){// 直接用fast指针覆盖slow指针的值ch[slow] = ch[fast];// 遇到前后相同值的,就跳过,即slow指针后退一步,下次循环就可以直接被覆盖掉了if(slow > 0 && ch[slow] == ch[slow - 1]){//消除之后又有新的元素可能挨在一起,判断前一个slow--;//重复,slow回退到前一个位置;下一次循环时被覆盖}else{slow++;//不重复,slow++}fast++;}return new String(ch,0,slow);}
}
这道题目就像是我们玩过的游戏对对碰,如果相同的元素挨在一起就要消除。
可能我们在玩游戏的时候感觉理所当然应该消除,但程序又怎么知道该如何消除呢,特别是消除之后又有新的元素可能挨在一起。
编程语言的一些功能实现也会使用栈结构,实现函数递归调用有时候就需要栈。
递归的实现就是:每一次递归调用都会把函数的局部变量、参数值和返回地址等压入调用栈中,然后递归返回的时候,从栈顶弹出上一次递归的各项参数,所以这就是递归为什么可以返回上一层位置的原因。
一种错误就是栈溢出,系统输出的异常是Segmentation fault
(当然不是所有的Segmentation fault
都是栈溢出导致的) ,如果你使用了递归,就要想一想是不是无限递归了,那么系统调用栈就会溢出。
而且在企业项目开发中,尽量不要使用递归!在项目比较大的时候,由于参数多,全局变量等等,使用递归很容易判断不充分return的条件,非常容易无限递归(或者递归层级过深),造成栈溢出错误(这种问题还不好排查!)
5.逆波兰表达式求值
给你一个字符串数组 tokens
,表示一个根据 逆波兰表示法 表示的算术表达式。
请你计算该表达式。返回一个表示表达式值的整数。
注意:
- 有效的算符为
'+'
、'-'
、'*'
和'/'
。 - 每个操作数(运算对象)都可以是一个整数或者另一个表达式。
- 两个整数之间的除法总是 向零截断 。
- 表达式中不含除零运算。
- 输入是一个根据逆波兰表示法表示的算术表达式。
- 答案及所有中间计算结果可以用 32 位 整数表示。
示例 1:
输入:tokens = ["2","1","+","3","*"]
输出:9
解释:该算式转化为常见的中缀算术表达式为:((2 + 1) * 3) = 9
示例 2:
输入:tokens = ["4","13","5","/","+"]
输出:6
解释:该算式转化为常见的中缀算术表达式为:(4 + (13 / 5)) = 6
示例 3:
输入:tokens = ["10","6","9","3","+","-11","*","/","*","17","+","5","+"]
输出:22
解释:该算式转化为常见的中缀算术表达式为:((10 * (6 / ((9 + 3) * -11))) + 17) + 5
= ((10 * (6 / (12 * -11))) + 17) + 5
= ((10 * (6 / -132)) + 17) + 5
= ((10 * 0) + 17) + 5
= (0 + 17) + 5
= 17 + 5
= 22
提示:
1 <= tokens.length <= 104
tokens[i]
是一个算符("+"
、"-"
、"*"
或"/"
),或是在范围[-200, 200]
内的一个整数
逆波兰表达式:
逆波兰表达式是一种后缀表达式,所谓后缀就是指算符写在后面。我们习惯看到的表达式都是中缀表达式:4 + 13 /5;
- 平常使用的算式则是一种中缀表达式,如
( 1 + 2 ) * ( 3 + 4 )
。 - 该算式的逆波兰表达式写法为
( ( 1 2 + ) ( 3 4 + ) * )
。
逆波兰表达式主要有以下两个优点:
- 去掉括号后表达式无歧义,上式即便写成
1 2 + 3 4 + *
也可以依据次序计算出正确结果。 - 适合用栈操作运算:遇到数字则入栈;遇到算符则取出栈顶两个数字进行计算,并将结果压入栈中
思路
上一题中提到: 递归就是用栈来实现的。所以栈与递归之间在某种程度上是可以转换的! 这一点我们在后续讲解二叉树的时候,会更详细的讲解到。
那么来看一下本题,其实逆波兰表达式相当于是二叉树中的后序遍历。 大家可以把运算符作为中间节点,按照后序遍历的规则画出一个二叉树。
但我们没有必要从二叉树的角度去解决这个问题,只要知道逆波兰表达式是用后序遍历的方式把二叉树序列化了,就可以了。
class Solution {
public:int evalRPN(vector<string>& tokens) {// 力扣修改了后台测试数据,需要用longlongstack<long long> st; for (int i = 0; i < tokens.size(); i++) {if (tokens[i] == "+" || tokens[i] == "-" || tokens[i] == "*" || tokens[i] == "/") {long long num1 = st.top();st.pop();long long num2 = st.top();st.pop();if (tokens[i] == "+") st.push(num2 + num1);if (tokens[i] == "-") st.push(num2 - num1);if (tokens[i] == "*") st.push(num2 * num1);if (tokens[i] == "/") st.push(num2 / num1);} else {st.push(stoll(tokens[i]));//stoll() 是 C++ 中的一个函数,用于将字符串转换为长长整型(long long int)//如果转换成功,则返回转换后的长长整型值;如果转换失败,则返回0}}int result = st.top();st.pop(); // 把栈里最后一个元素弹出(其实不弹出也没事)return result;}
};
题外话
我们习惯看到的表达式都是中缀表达式,因为符合我们的习惯,但是中缀表达式对于计算机来说就不是很友好了。
例如:4 + 13 / 5,这就是中缀表达式,计算机从左到右去扫描的话,扫到13,还要判断13后面是什么运算符,还要比较一下优先级,然后13还和后面的5做运算,做完运算之后,还要向前回退到 4 的位置,继续做加法,你说麻不麻烦!
那么将中缀表达式,转化为后缀表达式之后:[“4”, “13”, “5”, “/”, “+”] ,就不一样了,计算机可以利用栈来顺序处理,不需要考虑优先级了。也不用回退了, 所以后缀表达式对计算机来说是非常友好的。
可以说本题不仅仅是一道好题,也展现出计算机的思考方式。
在1970年代和1980年代,惠普在其所有台式和手持式计算器中都使用了RPN(后缀表达式),直到2020年代仍在某些模型中使用了RPN。
总结
1.代码一直报错不清楚原因