HashData的湖仓一体思考:Iceberg、Hudi特性讲解与支持方案

湖仓一体作为一种新兴的开放式数据管理架构,能够充分发挥数据湖的灵活性、生态丰富以及数据仓库的企业级数据分析能力,已经成为企业建设现代数据平台的热门选择。

在此前的直播中,我们分享了HashData湖仓一体方案架构设计与Hive数据同步。本次直播,我们介绍了Iceberg、Hudi的特性与支持方案,并对HashData连接组件的原理和实现流程进行了详细的讲解和演示。以下内容根据直播文字整理。

Hudi与Iceberg技术应用场景

在企业数据平台建设过程中,随着数据量的持续增加与场景的丰富,每家企业都会基于自有技术路线和需求,发展出形态各异的架构设计。

数据湖作为一种不断演进、可扩展的大数据存储、处理和分析基础设施,允许企业存储任意规模的结构化和非结构化数据。伴随着云存储(尤其是对象存储)技术逐步成熟,数据湖的解决方案也逐步向云原生靠近,数据处理方式由批处理向流式处理发展。

在这样的背景下,现代数据湖需要具备强大的流批处理能力、高效的数据更新机制、严谨的事务支持以及灵活多变的存储和计算引擎。

面对上述需求,传统的Hive+HDFS架构数据仓库存在数据修改成本高、不支持事务(ACID)、无法实现流批统一、数据分析用时长等“痛点”,无法直接用于建设数据湖。近些年,Hudi和Iceberg等先进的表格式管理技术,凭借开放的文件存储格式、丰富的事务支持以及高效的读取写入等特点,成为企业数据湖建设的主流选型。

Hudi基本术语与写入操作流程

Hudi的诞生是为了解决Hadoop体系内数据更新和增量查询的问题,在数据存储、查询等方面均具有鲜明的特性。

FileLayouts

Hudi的文件布局是其实现增量查询、数据更新等特性的基础,每个Hudi表有一个固定的目录,存放元数据(.hoodie)以及数据文件,其中数据文件以分区方式进行划分,每个分区有多个数据文件(基础文件和日志文件),这些数据文件在逻辑上被组织为文件和文件组。

  • Base File:列式存储的数据文件,默认是Parquet格式。
  • Log File:行存储的数据文件,为avro格式,保存的是数据的变更日志(redo log),会定期与Base File进行合并。
  • File Group:同一分区下,具有相同fileId的所有BaseFiles + LogFiles集合,一个分区可以有多个文件组。
  • File Slice:同一分区下,具有相同fileId以及相同instant的BaseFiles + LogFiles集合。

Timeline

可以理解为Hudi表的一个时间线,记录了Hudi表在不同时刻的操作,并保证操作的原子性。Timeline包含action、time、state三个字段。

Table Types

Hudi提供了两种表类型,分别为Copy-On-Write(COW表)和Merge-On-Read(MOR表):

  • COW表:仅使用列式文件格式(如parquet)存储数据。通过在写入期间执行同步合并,简单地更新版本和重写文件,适合更新数据量较大、时效性要求不高的场景
  • MOR表:使用基于列+基于行(如avro)的文件格式的组合存储数据,更新被记录到增量文件中(基于行),然后被压缩以同步或异步地生成新版本的列式文件,适用更新数据量小、时效性要求高的场景

Query types

Hudi支持三种查询类型,分别为Snapshot Query、Read Optimized Query、Incremental Query:

  • Snapshot Query:查询最近一次Snapshot的数据,也就是最新的数据。
  • Read Optimized Query:针对MOR表特有的一种查询方式,只读取BaseFile,不合并Log,因为使用的都是列式文件格式,所以效率较高。
  • Incremental Query:用户需要指定一个commit time,然后Hudi会扫描文件中的记录,过滤出commit_time大于begintime的TimeLine记录及BaseFile,可以有效地提高增量数据处理能力。

Writing

在Hudi数据湖框架中支持三种方式写入数据:Upsert、Insert以及Bulk-Insert。其中,Upsert为默认行为,也是Hudi的核心功能。

图1:Spark写入Hudi操作流程示意图

如图1所示,Spark写入Hudi,Upsert执行核心操作如下:

  1. 开始提交:判断上次任务是否失败,如果失败会触发回滚操作。然后会根据当前时间生成一个事务开始的请求标识元数据。
  2. 构造HoodieRecord Rdd对象:Hudi会根据元数据信息构造HoodieRecord Rdd对象,方便后续数据去重和数据合并。
  3. 数据去重:一批增量数据中可能会有重复的数据,Hudi会根据主键对数据进行去重,避免重复数据写入Hudi表。
  4. 数据fileId位置信息获取:在修改记录中可以根据索引获取当前记录所属文件的fileld,因数据合并时Update操作需要知道向哪个fileid文件写入新的快照文件。
  5. 数据合并:在COW表模式中会重写索引命中的fileId快照文件;在MOR表模式中根据fileId追加到分区中的log文件。
  6. 完成提交:在元数据中生成xxxx.commit文件,只有生成commit元数据文件,查询引擎才能根据元数据查询到刚刚Upsert后的数据。 
  7. 数据清理:用于删除旧的文件片,以及限制表空间的增长,清理操作在每次写操作之后自动被执行,同时利用缓存在TimeLine Server上的TimeLine Metadata来防止扫描整个表。
  8. Compaction压缩:主要是MOR模式中才会用到,会将MOR模式中的xxx.log数据合并到xxx.parquet快照文件中去。

lceberg基本术语与写入操作流程

Iceberg的官网定位是“面向海量数据分析场景的高效存储格式”,所以它没有像Hudi一样模拟业务数据库的设计模式(主键+索引)来实现数据更新,而是设计了更强大的文件组织形式来实现数据的Update操作。

Data files(数据文件)

数据文件是Apache Iceberg表真实存储数据的文件,一般是在表的数据存储目录的data目录下,如果我们的文件格式选择的是parquet,那么文件是以“.parquet”结尾,Iceberg每次更新会产生多个数据文件。

Snapshot(表快照)

快照代表一张表在某个时刻的状态,每个快照里面会列出表在某个时刻的所有Data files 列表。Data files存储在不同的Manifest files里面,Manifest files存储在一个Manifest list文件里面,而一个Manifest list文件代表一个快照。

Manifest file(清单文件)

Manifest file是一个元数据文件,它列出组成快照(Snapshot)的数据文件(Data files)的列表信息。每行都是每个数据文件的详细描述,包括数据文件的状态、文件路径、分区信息、列级别的统计信息(比如每列的最大最小值、空值数等)、文件的大小以及文件里面数据行数等信息。其中,列级别的统计信息可以在扫描表数据时过滤掉不必要的文件。Manifest file是以avro格式进行存储的,以“.avro”后缀结尾。

Manifest list(清单列表)

Manifest list也是一个元数据文件,它列出构建表快照(Snapshot)的清单。这个元数据文件中存储的是Manifest file列表,每个Manifest file占据一行。每行中存储了Manifest file的路径、其存储的数据文件(Data files)的分区范围,增加了几个数文件、删除了几个数据文件等信息,这些信息可以用来在查询时提供过滤,加快速度。

图2:Iceberg写入流程示意图

在向Iceberg写入数据时,其内部的工作流程可以概括为以下几个步骤:

  1. 生成FileAppender:根据所配置的文件格式,Iceberg会生成对应FileAppender,这是实际执行写文件操作的组件。
  2. 写入数据文件:FileAppender负责将数据写入到目标文件中。
  3. 收集统计信息:所有数据写完后,Iceberg会收集写入的统计信息,如记录数(record_count)、下界(lower_bound)、上界(upper_bound)、值计数(value_count)等,以上信息对后续生成Manifest file提供重要输入文件。
  4. 生成Manifest file:基于统计信息,Iceberg生成对应的Manifest文件,Manifest文件是Datafile的索引,保存了每个数据文件的路径等信息,Iceberg根据这些Manifest file 实现对文件的组织和管理。
  5. 信息回传:Executor端将生成的Manifest文件和其他相关信息传回给Driver端,完成整个写入过程。

Hashdata连接器工作原理及实现流程

数据湖中的数据通常未经组织或处理,直接分析的效率受限。HashData通过自研Hudi、Iceberg连接器,实现了与这两种架构的流畅集成。HashData目前对于Hudi、Iceberg支持Readonly表,不支持Write。

图3:HashData连接器工作原理示意图

如上图所示,HashData连接组件通过创建外部表的方式读取Hudi、Iceberg数据,进一步对湖内数据进行分析使用。

创建外部表

  1. 首先,需要Hudi、Iceberg存在需要读取的表。我们通过Spark、Flink等组件在Hudi、Iceberg上创建表并写入数据,且指定为Hudi、Iceberg格式。
  2. 在HashData DB上提交创建一张对应的可读外部表,外部表信息包含:Path、Catalog Type等信息,也就是我们前文提到的位置相关信息。
  3. 接下来调用Hudi、Iceberg客户端,客户端会新建连接调用Get Table,并传入外部表信息来获取Hudi、Iceberg表的元数据信息,包括表的字段数量、字段名、数据类型等。
  4. 根据获取到的元数据信息,在DB上mapping生成HashData的表信息。
  5. 至此,创建一张对应Hudi、Iceberg的外部表流程结束。

上述步骤,都是通过连接组件完成,相当于把表的Path、Catalogtype等信息打包传给连接器。连接器在获取相关表信息后再传递回来,HashData把传回的信息mapping为可读外部表。

Select表流程

  1. 当发起Select查询语句后,HashData会在内部发起Query For Select,通过连接器把查询的相关参数打包;然后通过External Scan 的Filter(比如SQL里的where条件)传给连接器。
  2. 连接器再调用Hudi、Iceberg的Scan接口,Scan方法会得到传入的参数,根据这些参数去过滤查询这次表相关的所有文件列表,并返回相关列表文件。
  3. 获取文件列表后,External会生成查询计划,完成查询操作和Hudi、Iceberg的元数据交互。
  4. HashData在获取数据后,会将文件列表打包,然后分发给每个Segment节点,Segment会获取文件列表里的一个分片,并依据这些信息读取数据。在数据返回后,整个读取数据的流程就此结束。

结语

Hudi、Iceberg作为当前主流的数据湖方案,受到广泛青睐。HashData“湖仓一体”技术方案,打通了数据仓库和数据湖,底层支持多种数据类型并存,能够真正实现数据间的相互共享,上层可以通过统一封装的接口进行访问,可同时支持实时查询和分析,为企业在数据湖架构下的数据治理与使用带来了更多的便利。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/512283.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

你所不知道的端口耗尽(三)

问题背景 在你所不知道的端口耗尽前面的两篇章节中,介绍了经典的客户端端口耗尽和SNAT端口耗尽问题,但是对于解决方案只是一笔带过,这篇文章会更详细的介绍解决方案。解决方案主要分为两大类,优化部署和优化应用程序。 优化部署 …

Unity2013.1.19_DOTS_Burst compiler

Unity2013.1.19_DOTS_Burst compiler DOTS是一种新产品,现在尚在起步阶段。由于它处于持续发展中,随着我们努力使其达到最佳状态,您将看到API会不断演变和日趋成熟。 DOTS包含以下元素: 实体组件系统(ECS) - 提供使用面向数据的…

selenuim【1】$x(‘xpath’)、WebDriverWait()、try/assert

文章目录 1、执行driver webdriver.Chrome()后很久才打开浏览器2、浏览器多元素定位 $x(‘xpath语法’)3、打开浏览器driver.get("网址")执行了很久才开始定位元素:等待(1)driver.set_page_load_timeout(t)(2&#xff…

亚信安慧AntDB:编织数据丝路,缔造创新篇章

亚信安慧AntDB作为一款具备国产化升级改造经验的数据库系统,在15年的平稳运行中积累了丰富经验。通过持续的创新和技术进步,AntDB不断优化性能和功能,满足用户的需求,与国际先进数据库系统保持竞争力。 AntDB秉承着与用户和行业保…

2024年最新《国际预警期刊》正式更新!

提示:文章写完后,目录可以自动生成,如何生成可参考右边的帮助文档 文章目录 一、国际期刊预警名单的变化?二、课程案例展示(篇幅有限仅展示部分)1.【热图系列】2.【九象限图系列】3.【富集分析系列】4.【机…

c# 调用ip2region组件 根据ip地址进行定位归属地运营商

需求描述:当项目中需要将IP转换成对应的归属地以及运营商,那么通过ip2region组件即可完美实现。 p2region本身支持net4.5以上,还有个ip2region.net组件,它要求net6及以上。所以,根据自己项目的需求即可选择其中一种方…

Domain Adaptation Vs. Prompt-Tuning:能否用域自适应解决大模型提示学习问题?

点击蓝字 关注我们 AI TIME欢迎每一位AI爱好者的加入! 作者简介 李江梦,中国科学院软件研究所天基综合信息系统全国重点实验室助理研究员 论文简介 今天介绍的是被机器学习领域顶级学术会议ICLR 2024接收的论文:BayesPrompt: Prompting Large…

006-CSS-常见问题汇总

常见问题汇总 1、伪元素与伪类2、偏门但好用的样式3、文字溢出三个点展示4、空白折叠问题5、文字的垂直居中6、 Vue项目中 在父组件中修改子组件样式7、BFC 概念7.1、兄弟元素外边距合并7.2、父子元素外边距塌陷 8、box-sizing8.1、box-sizing: border-box8.2、box-sizing: con…

机器人顶刊IJRR近期国人新作(2024)

一、IJRR简介 The International Journal of Robotics Research(IJRR)是机器人领域的高水平学术期刊,专注于发布关于机器人技术和相关领域的最新研究成果。IJRR创刊于1982年,是该领域的第一本学术刊物,2022-2023最新影…

el-dialog封装组件

父页面 <template><div><el-button type"primary" click"visible true">展示弹窗</el-button><!-- 弹窗组件 --><PlayVideo v-if"visible" :visible.syncvisible /></div> </template><sc…

[Redis]——Spring整合Redis(SpringDataRedis)

⭐准备工作&#xff1a; 确保Redis服务已启动idea开发环境 ⭐Redis整合步骤&#xff1a; 1.pom文件引入依赖 2.yml文件配置连接信息 3.修改Redis序列化方式 4.注入RedisTemplate 使用 小知识&#xff1a; Spring整合的Redis可以将Object对象自动序列化成字符串&#xff0…

探索API测试的奇妙世界:总结与思考!

本文主要是关于 API 测试的方法论探讨。 什么是 API 测试&#xff1f; API 测试是一种软件测试&#xff0c;涉及验证和确认应用程序接口 ( API ) 及其与其他服务组件的交互。测试重点关注软件架构的业务逻辑层&#xff0c;确保API按预期运行、数据准确交换、服务在各种条件下…