让 GenAI 提供更好答案的诀窍

在使用GenAI回答有关数据的问题之前,重要的是首先评估所提出的问题。这是Miso.ai的首席执行官兼联合创始人Lucky Gunasekara对当今开发GenAI工具的团队的建议。

GenAI作为一种界面提供了巨大的潜力,使用户能够以独特的方式查询你的数据,以接收针对他们的需求的答案,例如,作为查询助手,GenAI工具可以帮助客户使用简单的问答格式更好地导航广泛的产品知识库。

但在使用GenAI回答有关数据的问题之前,重要的是首先评估所提出的问题。

这是Miso.ai的首席执行官兼联合创始人Lucky Gunasekara对当今开发GenAI工具的团队的建议。

出于对Miso.ai的产品Smart Answers如何展现其洞察力的兴趣,我要求Gunasekara更深入地讨论Miso.ai理解和回答用户问题的方法。

大型语言模型“实际上比我们想象的要幼稚得多”,Gunasekara说,例如,如果被问到一个有强烈观点的问题,大语言模型很可能会去寻找证实这个观点的精挑细选的数据,即使现有的数据表明这个观点是错误的。因此,如果被问到“为什么项目X失败了?”,大语言模型可能会列出一个项目失败的原因清单——即使它是成功的,而这不是你想要的一个面向公众的应用程序所做的事情。

Gunasekara指出,在所谓的RAG(检索增强生成)应用程序中,评估问题是一个典型的遗漏步骤,RAG应用程序将大语言模型指向特定的数据体,并告诉它仅根据该数据回答问题。

这类应用程序通常遵循以下(稍微简化的)设置模式:

  • 将现有数据拆分成块,因为所有数据都太大,无法放入单个大语言模型查询中。
  • 为每个块生成所谓的嵌入,将该块的语义表示为一串数字,并存储它们,在数据更改时根据需要进行更新。

然后是每一个问题:

  • 生成嵌入。
  • 使用基于嵌入的计算,找出在含义上与问题最相似的文本块。
  • 将用户的问题输入大语言模型,并告诉它只根据最相关的块来回答。

这就是Gunasekara的团队采取不同方法的地方,他们增加了一个步骤,在搜索相关信息之前检查问题。“我们不会直接问这个问题,而是首先问这个假设是否正确”, Miso的首席技术官兼联合创始人Andy Hsieh解释说。

除了检查问题中固有的假设外,还有其他方法来加强基本的RAG管道,以帮助改进结果。Gunasekara建议超越基础,特别是在从实验阶段转向值得生产的解决方案时。

Gunasekara说:“有很多人强调‘建立一个矢量数据库,做一个RAG设置,一切都会开箱即用’,这是一种很好的概念验证方式,但如果你需要做一项不会产生意想不到的后果的企业级服务,那永远是上下文、上下文、上下文”。

这可能意味着除了使用文本的语义之外,还可以使用其他信号,如新近和流行。Gunasekara指出了Miso正在与一个烹饪网站合作的另一个项目,该项目解构了这个问题:“派对上最好的烘焙蛋糕是什么?”

他说,你需要区分出你真正需要什么信号来进行查询。“Make-Advance”蛋糕的意思是不需要马上端上,“for a party”的意思是它需要为不止几个人服务,还有一个问题是,大语言模型如何确定哪些食谱是“最好的”,这可能意味着使用其他网站数据,比如哪些食谱拥有最高的流量、最高的读者排名,或者被授予编辑的选择——所有这些都与查找和汇总相关文本块分开。

Gunasekara说:“把这些事情做好的许多窍门更多地体现在这些背景线索中”。

虽然大语言模型的质量是另一个重要因素,但Miso认为没有必要使用最高评级和最昂贵的商业大语言模型,相反,Miso正在为一些客户项目微调基于Llama 2的模型,这在一定程度上是为了降低成本,也是因为一些客户不希望他们的数据泄露给第三方,Miso之所以这么做,也是因为Gunasekara所说的“开源大语言模型现在正在涌现一股巨大的力量”。

“开源真的在迎头赶上”,Hsieh补充道,“开源模型非常可能会超越GPT-4”。    

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/517964.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

985硕的4家大厂实习与校招经历专题分享(part1)

先简单介绍一下我的个人经历: 985硕士24届毕业生,实验室方向:CV深度学习 就业:工程-java后端 关注大模型相关技术发展 校招offer: 阿里巴巴 字节跳动 等10 研究生期间独立发了一篇二区SCI 实习经历:字节 阿里 京东 B站 (只看大厂…

区块链媒体套餐:精益求精链游媒体宣发推广7个关键细节分享-华媒舍

在如今竞争激烈的游戏行业,一款优秀的游戏缺乏有效的宣发推广,很难脱颖而出。而随着区块链技术的兴起,链游媒体的宣发推广成为游戏开发者和运营商的重要选择之一。本文将为大家介绍精益求精的链游媒体宣发推广的七个关键细节。 1. 定位目标受…

26.基于springboot + vue实现的前后端分离-就业管理系统

项目介绍 系统分为管理员、企业、求职者三个角色 管理员: 登录、个人中心、学生信息管理、企业信息管理、岗位分类管理、学历信息管理、友情链接管理、新闻资讯管理、收藏管理、招聘信息管理、应聘信息管理、求职者信息管理 企业: 注册、登录、个人…

【三】【SQL Server】如何运用SQL Server中查询设计器通关数据库期末查询大题

数据库学生选择1122 数据库展示 course表展示 SC表展示 student表展示 数据库学生选课1122_1 第一题 第二题 第三题 第四题 第五题 数据库学生选课1122_2 第六题 第七题 第八题 第九题 第十题 结尾 最后,感谢您阅读我的文章,希望这些内容能够对您有所启…

CogPMAlignTool模板匹配工具练习——计算硬币金额

计算图片中硬币的金额 在做这个练习之前我们需要认识一个新的工具,CogResultsAnalysisTool是一种用于分析和处理视觉检测结果的工具。该工具通常用于检查和验证视觉系统对图像进行处理和分析后得到的结果,以确保其准确性和可靠性。 1、首先我们要创建三…

Spring之Bean详解

Spring之Bean详解 什么是Bean? 在Spring中,Bean是指由Spring容器管理的对象,这些对象是由Spring IoC容器负责创建、组装和管理的。Bean可以是Java类的实例,也可以是其他Spring管理的组件,例如数据源、事务管理器等。…

算法打卡day8|字符串篇02|Leetcode 28. 找出字符串中第一个匹配项的下标、459. 重复的子字符串

算法题 Leetcode 28. 找出字符串中第一个匹配项的下标 题目链接:28. 找出字符串中第一个匹配项的下标 大佬视频讲解:KMP理论篇 KMP代码篇 个人思路 当看到在一个串中查找是否出现过另一个串,那肯定是用kmp算法了; kmp比较难理解,详细理论和代码可以…

Midjourney入门:AI绘画真的能替代人类的丹青妙笔吗?

名人说:一花独放不是春,百花齐放花满园。——《增广贤文》 作者:Code_流苏(CSDN)(一个喜欢古诗词和编程的Coder😊) 目录 一、简要介绍1、Midjourney2、使用方法 二、绘画1、动物类2、风景类3、动漫类4、艺…

【记录处理Vue项目中Video.js播放不了MP4视频Bug】

记录处理Vue项目中Video.js播放不了MP4视频Bug 一、项目场景:二、问题描述三、原因分析:四、解决方案: 一、项目场景: 在Vue项目中使用Video.js播放MP4视频。 二、问题描述 在项目中使用Video.js播放MP4视频。视频采集上来存在数…

以太网帧格式

以太网帧格式 以太网帧格式前导码(Preamble)帧起始界定符(SFD,Start Frame Delimiter)以太网帧头目的MAC地址源MAC地址长度/类型 数据段帧检验序列(FCS,Frame Check Sequence)帧间隙…

实现连锁餐饮业务数字化管理:餐饮连锁管理APP开发思路与实践

在餐饮行业,尤其是餐饮连锁业务中,数字化管理更是刻不容缓。通过开发一款餐饮连锁管理APP,可以帮助餐饮连锁企业实现数字化管理,提升运营效率,优化服务体验,今天小编将给大家讲该APP的开发思路与实践。 一、…

[C#]winform基于C2PNet算法实现室内和室外图像去雾

【CP2Net框架】 https://github.com/YuZheng9/C2PNet 【CP2Net介绍】 Abstract 考虑到不适定的性质,发展了单图像去模糊的对比正则化,引入了来自负图像的信息作为下界。然而,对比样本是非一致的,因为阴性通常距离清晰&#xff…