LabVIEW深度相机与三维定位实战(下)

‍‍🏡博客主页: virobotics的CSDN博客:LabVIEW深度学习、人工智能博主
🎄所属专栏:『LabVIEW深度学习实战』
🍻上期文章:『LabVIEW深度相机与三维定位实战(上)』
📰如觉得博主文章写的不错或对你有所帮助的话,还望大家多多支持呀! 欢迎大家✌关注、👍点赞、✌收藏、👍订阅专栏

文章目录

  • 前言
  • 一、立体匹配与ACV算法
    • 1.1 立体匹配
    • 1.2 ACV算法
  • 二、环境搭建
    • 2.1 部署本项目时所用环境
    • 2.2 LabVIEW工具包下载及安装
  • 三、LabVIEW实现ACVNet立体匹配
    • 3.1 获取模型
    • 3.2 测试范例
  • 四、项目源码
  • 总结

前言

Hello,大家好,这里是virobotics。今天给大家分享在LabVIEW中实现深度相机与三维定位:立体匹配与ACV算法。关于双目相机基础支持可查看上一篇博文『LabVIEW深度相机与三维定位实战(上)』


一、立体匹配与ACV算法

1.1 立体匹配

  • 基本思路

    如上一篇博文所述,如果已知左右相机画面中的两个像素来源于空间中的同一个点,那么就可以通过视差来计算出该点到基线的距离(深度)。

    如果有一种算法:针对左目画面中的每一个像素,能够分别找到它们在右目画面中对应空间中同一点的像素(假如存在的话),那么就可以计算出单目画面中每一个点的深度,从而形成立体视觉。

  • 立体匹配的任务

    立体匹配的目标,就是从不同视点图像中找到匹配的对应点。该模型的输入为若干不同视角的相机采集的图像,输出是这些图像上的点的对应关系。

    立体匹配是目前机器视觉领域的一个难点,近年来不断有人发明或改良出新的方法,以求提高效率和准确性。本文接下来将介绍其中一种方法——ACV。

1.2 ACV算法

  • 简介
    该算法来源于今年(2022)发表于CVPR上的一篇论文:
    Attention Concatenation Volume for Accurate and Efficient Stereo Matching
    原文下载地址: https://arxiv.org/abs/2203.02146

    ACV,即 Attention Concatenation Volume,意为:注意力连接(代价)体。它是文章提出的一种新的立体匹配“代价体”的构建方法。

    “该方法利用相关线索生成注意力权重,以抑制冗余信息,增强连接体积中的匹配相关信息。为了产生可靠的注意力权重,本文提出了多级自适应补丁匹配,以提高不同视差下匹配成本的显著性,即使是无纹理区域。”

  • ACVNet网络结构

    如下图所示,首先通过CNN分别提取左右画面的特征图,然后上下“兵分两路”:
    1、下边将左右特征图,按照一定规律拼接,生成初始连接代价体(Concat volume);
    2、上边将(不同层的)左右特征图,进行多级自适应补丁匹配(MAPM),最终生成注意力权重 (Attention Weights);
    3、用注意力权重 对Concat volume进行过滤,以增强相关抑制冗余,得到注意力连接代价体(Attention concat volume);
    4、最后ACV通过一个代价聚合网络(Cost Aggregation),输出最终结果(Left画面每一点的视差预测)。
    在这里插入图片描述

  • 初始连接代价体的构建
    给定一个尺寸为H×W×3的输入立体图像对,对于每个图像,我们通过CNN特征提取,分别得到左、右图像的一元特征图fl和fr。

    特征图的大小为Nc×H/4×W/4(Nc=32)。然后通过连接每个视差水平的fl和fr形成初始连接体,即为
    在这里插入图片描述
    Cconcat 的尺寸为2Nc ×D/4×H/4×W/4 ,其中D为最大视差。

🔍 帮助理解:

1、左右特征图都是Nc通道。并且经过多次卷积之后,尺寸已经缩小为原来的1/4。那么原图最大视差D,就对应特征图的最大视差为D/4;

2、通俗地讲解拼接过程:
把Nc通道的右特征图的所有像素,沿X轴向右平移1个像素,然后拼接在Nc通道的左特征图的后面,得到第1组2Nc通道的拼接特征图。
平移2个像素拼接得到第2组、平移3个像素拼接得到第3组……直到平移D/4,一共D/4组2Nc通道的拼接特征图。因此Cconcat 的尺寸为2Nc ×D/4×H/4×W/4


3、这种连接体的构建,实际是在列举所有视差匹配的可能性。理想双目只在X方向有视差,即同源点必然位于左右特征图的同一条水平线上,且XL一定大于XR。因此我们对右侧特征图沿X向右平移1到D/4个单位,再分别与左侧特征图叠加,就能让所有同源点得到一次“左右重合”的机会。重合时对应的平移距离,反映了该点的视差大小,进而反映该点的深度。

  • 多级自适应补丁匹配(MAPM)
    从特征提取模块得到3个不同层次的特征图l1、l2、l3,其通道数分别为64、128、128。对于每一个处于特定水平的像素,我们利用一个具有预定尺寸和自适应学习权重的atrous patch来计算匹配成本。通过控制膨胀率,我们确保patch的范围与特征图层有关,同时在计算中心像素的相似度时保持相同的像素数量。然后,两个相应的像素的相似性是patch内相应像素之间的相关性的加权和。
    在这里插入图片描述
    🔍 帮助理解:

1、虽然算法复杂,但是目的简单,就是在估计左右特征图上的两个点是空间同一点的可能性(权重);

2、估算可能性的方法,是选取该点及其周围点,参与加权计算。这个选取范围叫做patch,是个会膨胀的自适应范围。但无论怎么膨胀,参与计算的点数是恒定的9个,就是图中红色和橙色的点。白色的点是膨胀产生的空洞,不参与计算。

将l1、l2和l3的三级特征图连接起来,形成Nf个通道的单级特征图(Nf=320)。将Nf通道平均分成Ng组(Ng=40),前8组来自l1,中间16组来自l2,最后16组来自l3。不同级别的特征图不会相互干扰。我们把第g个特征组表示为 在这里插入图片描述
,多级补丁匹配量Cpatch的计算方法为:
在这里插入图片描述

  • 注意力权重过滤
    在得到注意权重A后,我们用它来消除初始连接代价体中的冗余信息,进而提高其表示能力。
    通道 i 处的注意力连接代价体(ACV)计算为:
    在这里插入图片描述
    ⊙表示对应像素点乘,注意力权重 A 应用于初始连接代价体的所有通道的过滤。

  • 代价聚合与视差预测
    用一个预沙漏模块来处理ACV,它由4个3D卷积组成(包括批归一化、ReLU)、2个3D堆叠沙漏网络,堆叠在一个 encoder-decoder结构。

    由代价聚合获得3个输出,对于每个输出,使用2个3D卷积得到单通道4D volume,然后上采样并通过softmax转化为置信体。3个预测的视差图表示为d0、d1、d2。最终,预测值就是每一层视差与置信度乘积求和。(k表示视差层级,pk表示对应的置信度)
    在这里插入图片描述


二、环境搭建

2.1 部署本项目时所用环境

  • 操作系统:Windows10
  • python:3.6及以上
  • LabVIEW:2018及以上 64位版本
  • AI视觉工具包:techforce_lib_opencv_cpu-1.0.0.98.vip
  • onnx工具包:virobotics_lib_onnx_cuda_tensorrt-1.0.0.16.vip【1.0.0.16及以上版本】

2.2 LabVIEW工具包下载及安装

  • AI视觉工具包下载与安装参考:
    https://blog.csdn.net/virobotics/article/details/123656523
  • onnx工具包下载与安装参考:
    https://blog.csdn.net/virobotics/article/details/124998746

三、LabVIEW实现ACVNet立体匹配

3.1 获取模型

项目中提供一个onnx格式的ACVNet模型,模型文件位于:“范例\acvnet_maxdisp192_sceneflow_240x320.onnx”

模型的输入为左右两张彩色图,大小均为 3240320,须归一化到(-1~1)之间。

最大视差为maxdisp = 192 。

模型的输出为3个层级下的,左图各个像素的视差预测。通常我们只取其中一个层级下的预测结果。

3.2 测试范例

  1. 打开“范例\ACVNet_main.vi”;

  2. 切换到程序框图,检查依赖的模型文件路径、左右图片路径是否正确。

  3. 切换到前面板,运行VI,观察输出结果。(本范例采用灰度图对预测结果进行后处理,灰度大小与该点的视差大小正相关)
    在这里插入图片描述

  4. 修改图片路径,用上一篇博文采集的left.png和right.png图片作为输入,运行测试。
    在这里插入图片描述


四、项目源码

如需源码,可在一键三连并订阅本专栏后评论区留下邮箱


总结

以上就是今天要给大家分享的内容,希望对大家有用。我是virobotics,我们下篇文章见~

如果文章对你有帮助,欢迎✌关注、👍点赞、✌收藏、👍订阅专栏

推荐阅读

LabVIEW图形化的AI视觉开发平台(非NI Vision),大幅降低人工智能开发门槛
LabVIEW图形化的AI视觉开发平台(非NI Vision)VI简介
LabVIEW AI视觉工具包OpenCV Mat基本用法和属性
手把手教你使用LabVIEW人工智能视觉工具包快速实现图像读取与采集

👇技术交流 · 一起学习 · 咨询分享,请联系👇

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/52014.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

pycharm——漏斗图

import pyecharts.options as opts from pyecharts.charts import Funnel""" Gallery 使用 pyecharts 1.1.0 参考地址: https://echarts.apache.org/examples/editor.html?cfunnel目前无法实现的功能:1、暂时无法对漏斗图的长宽等范围操作进行修改 ""…

如何搭建自动化测试框架?资深测试整理的PO模式,一套打通自动化...

目录:导读 前言一、Python编程入门到精通二、接口自动化项目实战三、Web自动化项目实战四、App自动化项目实战五、一线大厂简历六、测试开发DevOps体系七、常用自动化测试工具八、JMeter性能测试九、总结(尾部小惊喜) 前言 Po模型介绍 1、简…

zookeeper学习(三)基础数据结构

数据模型 在 zookeeper 中,可以说 zookeeper 中的所有存储的数据是由 znode 组成的,节点也称为 znode,并以 key/value 形式存储数据。 整体结构类似于 linux 文件系统的模式以树形结构存储。其中根路径以 / 开头。 进入 zookeeper 安装的 …

uniapp微信小程序底部弹窗自定义组件

基础弹窗效果组件 <template><view><viewclass"tui-actionsheet-class tui-actionsheet":class"[show ? tui-actionsheet-show : ]"><view class"regional-selection">底部弹窗</view></view><!-- 遮罩…

智慧工地3D可视化大屏数据展示提供实时数据和设备状态信息

智慧工地3D可视化大屏数据展示是一种基于数字化技术和虚拟仿真技术的智能化管理系统&#xff0c;可以为工地管理提供更加直观和高效的支持。以下是智慧工地3D可视化大屏数据展示可以提供的实用功能&#xff1a; 1.实时监测&#xff1a;数字孪生可视化系统可以将传感器数据与虚拟…

基于ARM+FPGA的驱控一体机器人控制器设计

目前市场上工业机器人&#xff0c;数控机床等多轴运动控制系统普遍采用运动控制器加 伺服驱动器的分布式控制方式。在这种控制方式中&#xff0c;控制器一方面完成人机交互&#xff0c;另 一方面进行 NC 代码的解释执行&#xff0c;插补运算&#xff0c;继而将计算出来的位…

windows编译zookeeker动态库供C++链接使用以及遇到的错误处理方法

windows下面C链接zookeeper资料不多&#xff0c;特此记录一下 编译环境VS 2015 一. 相关安装包安装下载 1. zookeeper zookeeper3.6.4 下载zip包解压即可 2. ant apache-ant-1.9.16 将包进行解压D:project\apache-ant-1.9.16&#xff0c;然后配置环境变量 新建 ANT_HOME 系…

算法通过村——Hash和队列问题解析

算法的备胎Hash和找靠山的队列 备胎Hash Hash&#xff0c;不管是算法&#xff0c;还是在工程中都会大量使用。很多复杂的算法问题都用Hash能够轻松解决&#xff0c;也正是如此&#xff0c;在算法例就显得没什么思维含量&#xff0c;所以Hash是应用里的扛把子&#xff0c;但在算…

无涯教程-Lua - 垃圾回收

Lua使用自动内存管理&#xff0c;该管理使用基于Lua内置的某些算法的垃圾回收。 垃圾收集器暂停 垃圾收集器暂停用于控制垃圾收集器之前需要等待多长时间&#xff1b; Lua的自动内存管理再次调用它。值小于100意味着Lua将不等待下一个周期。同样&#xff0c;此值的较高值将导…

postgresql表膨胀处理之pgcompacttable部署及使用

环境&#xff1a; 1&#xff09;redhat-release&#xff1a;CentOS Linux release 7.6.1810 (Core) 2&#xff09;database version&#xff1a;postgresql 14.6 一、添加pgstattuple pgcompacttable工具使用过程中需要依赖pgstattuple&#xff0c;因此需先添加pgstattuple…

leetcode 33.搜索旋转排序数组

⭐️ 题目描述 &#x1f31f; leetcode链接&#xff1a;搜索旋转排序数组 ps&#xff1a; 本题是二分查找的变形&#xff0c;旋转排序数组之后其实会形成两个有序的区间。算出平均下标先判断是否与 target 相等&#xff0c;因为这样可以减少代码的冗余。如果前者不成立则使用平…

HTML 是什么?它的全称是什么?

聚沙成塔每天进步一点点 专栏简介HTML是什么&#xff1f;HTML的全称是什么&#xff1f;写在最后 专栏简介 前端入门之旅&#xff1a;探索Web开发的奇妙世界 记得点击上方或者右侧链接订阅本专栏哦 几何带你启航前端之旅 欢迎来到前端入门之旅&#xff01;这个专栏是为那些对We…