mysql中两千万大表做时间范围查询很慢,怎么解决

预备知识

1、一个表的数据量达到好几千万或者上亿时,加索引的效果没那么明显啦。性能之所以会变差,是因为维护索引的B+树结构层级变得更高了,查询一条数据时,需要经历的磁盘IO变多,因此查询性能变慢。

少量数据可以考虑使用数据索引

2、InnoDB存储引擎最小储存单元是页,一页大小就是16k

B+树叶子存的是数据,内部节点存的是键值+指针。索引组织表通过非叶子节点的二分查找法以及指针确定数据在哪个页中,进而再去数据页中找到需要的数据;

假设B+树的高度为2的话,即有一个根结点和若干个叶子结点。这棵B+树的存放总记录数为=根结点指针数*单个叶子节点记录行数。

  • 如果一行记录的数据大小为1k,那么单个叶子节点可以存的记录数 =16k/1k =16.

  • 非叶子节点内存放多少指针呢?我们假设主键ID为bigint类型,长度为8字节(面试官问你int类型,一个int就是32位,4字节),而指针大小在InnoDB源码中设置为6字节,所以就是8+6=14字节,16k/14B =16*1024B/14B = 1170

因此,一棵高度为2的B+树,能存放1170 * 16=18720条这样的数据记录。同理一棵高度为3的B+树,能存放1170 *1170 *16 =21902400,也就是说,可以存放两千万左右的记录。B+树高度一般为1-3层,已经满足千万级别的数据存储。

如果B+树想存储更多的数据,那树结构层级就会更高,查询一条数据时,需要经历的磁盘IO变多,因此查询性能变慢。

解决方案考虑:可以考虑将页的大小调大减少IO;

如何调整B+树的N大小?

1, 通过改变key值来调整
N叉树中非叶子节点存放的是索引信息,索引包含Key和Point指针。Point指针固定为6个字节,假如Key为10个字节,那么单个索引就是16个字节。如果B+树中页大小为16K,那么一个页就可以存储1024个索引,此时N就等于1024。我们通过改变Key的大小,就可以改变N的值
2, 改变页的大小
页越大,一页存放的索引就越多,N就越大。

数据页调整后,如果数据页太小层数会太深,数据页太大,加载到内存的时间和单个数据页查询时间会提高,需要达到平衡才行。

2、其他解决方案

2.1 数据表分区

举例

CREATE TABLE orders (id INT(10) UNSIGNED NOT NULL AUTO_INCREMENT,order_no VARCHAR(20) NOT NULL,order_date DATE NOT NULL,amount DECIMAL(10,2) NOT NULL,PRIMARY KEY (id, order_date)
) ENGINE=InnoDB
PARTITION BY RANGE(YEAR(order_date))
(PARTITION p_2018 VALUES LESS THAN (2019),PARTITION p_2019 VALUES LESS THAN (2020),PARTITION p_2020 VALUES LESS THAN (2021),PARTITION p_other VALUES LESS THAN MAXVALUE
);

2.2 分库分表

采用水平分表,按月或按年分表

实施方案

1.取模方案:

拆分之前,先预估一下数据量。比如用户表有4000w数据,现在要把这些数据分到4个表user1 user2 uesr3 user4。比如id = 17,17对4取模为1,加上 ,所以这条数据存到user2表。

注意:进行水平拆分后的表要去掉auto_increment自增长。这时候的id可以用一个id 自增长临时表获得,或者使用 redis incr的方法。

优点:数据均匀的分到各个表中,出现热点问题的概率很低。

缺点:以后的数据扩容迁移比较困难难,当数据量变大之后,以前分到4个表现在要分到8个表,取模的值就变了,需要重新进行数据迁移。

2.range 范围方案

以范围进行拆分数据,就是在某个范围内的订单,存放到某个表中。比如id=12存放到user1表,id=1300万的存放到user2 表

优点:有利于将来对数据的扩容

缺点:如果热点数据都存在一个表中,则压力都在一个表中,其他表没有压力。

我们看到以上两种方案 都存在缺点 但是却又是互补的,那么我们将这两个方案结合会怎样呢?

3.hash取模和range方案结合

如下图 我们可以看到 group 组存放id 为0~4000万的数据,然后有三个数据库 DB0 DB1 DB2,DB0里面有四张表,DB1 和DB2 有三张表

假如id为15000 然后对10取模(为啥对10 取模 因为有10个表),取0 然后 落在DB_0,然后在根据range 范围,落在Table_0 里面。

分区分表的区别:

1、实现方式上

  • mysql的分表是真正的分表,一张表分成很多表后,每一个小表都是完整的一张表,都对应三个文件,一个.MYD数据文件,.MYI索引文件,.frm表结构

  • 分区不一样,一张大表进行分区后,他还是一张表,不会变成二张表,但是他存放数据的区块变多了。

2、提高性能上

  • 分表重点是存取数据时,如何提高mysql并发能力上;

  • 而分区呢,如何突破磁盘的读写能力,从而达到提高mysql性能的目的。

3、实现的难易度上

1、分表的方法有很多,用merge来分表,是最简单的一种方式。这种方式根分区难易度差不多,并且对程序代码来说可以做到透明的。如果是用其他分表方式就比分区麻烦了。2、分区实现是比较简单的,建立分区表,根建平常的表没什么区别,并且对开代码端来说是透明的

分区分表的联系

1、都能提高mysql的性高,在高并发状态下都有一个良好的表现。

2、分表和分区不矛盾,可以相互配合的,对于那些大访问量,并且表数据比较多的表,我们可以采取分表和分区结合的方式,访问量不大,但是表数据很多的表,我们可以采取分区的方式等。

分库分表存在的问题

1、事务问题

在执行分库分表之后,由于数据存储到了不同的库上,数据库事务管理出现了困难。如果依赖数据库本身的分布式事务管理功能去执行事务,将付出高昂的性能代价;如果由应用程序去协助控制,形成程序逻辑上的事务,又会造成编程方面的负担。

2、跨库跨表的join问题

在执行了分库分表之后,难以避免会将原本逻辑关联性很强的数据划分到不同的表、不同的库上,这时,表的关联操作将受到限制,我们无法join位于不同分库的表,也无法join分表粒度不同的表,结果原本一次查询能够完成的业务,可能需要多次查询才能完成。

3、额外的数据管理负担和数据运算压力

额外的数据管理负担,最显而易见的就是数据的定位问题和数据的增删改查的重复执行问题,这些都可以通过应用程序解决,但必然引起额外的逻辑运算,例如,对于一个记录用户成绩的用户数据表userTable,业务要求查出成绩最好的100位,在进行分表之前,只需一个order by语句就可以搞定,但是在进行分表之后,将需要n个order by语句,分别查出每一个分表的前100名用户数据,然后再对这些数据进行合并计算,才能得出结果。

2.3 冷热数据归档

归档表数据的初始化

1、业务增量数据处理过程

2、数据的获取过程

2.4 同步至es中进行查询

3. 方案选择

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/521383.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

电脑记事本怎么查看字数 记事本字数便捷查看方法

在数字化的时代,电脑记事本已成为我记录生活、工作的得力助手。相较于传统的纸质笔记本,它的便捷性不言而喻:随时随地,打开就能写,无需担心纸张用尽或笔墨不干的尴尬。但有一个问题一直困扰着我,那就是如何…

仿牛客网项目---私信列表和发送列表功能的实现

这篇文章我们来讲一下我的这个项目的另外一个功能&#xff1a;私信列表和发送列表功能。 先来设计DAO层。 Mapper public interface MessageMapper {// 查询当前用户的会话列表,针对每个会话只返回一条最新的私信.List<Message> selectConversations(int userId, int of…

第四篇【传奇开心果系列】Python的自动化办公库技术点案例示例:深度解读Pandas生物信息学领域应用

传奇开心果博文系列 系列博文目录Python的自动化办公库技术点案例示例系列 博文目录前言一、Pandas生物学数据操作应用介绍二、数据加载与清洗示例代码三、数据分析与统计示例代码四、数据可视化示例代码五、基因组数据分析示例代码六、蛋白质数据分析示例代码七、生物医学图像…

Java中的静态代理与动态代理

本来肝完通信编程的文章后想紧接着来一篇RPC的文章的&#xff0c;但是一想 RPC的话&#xff0c;还涉及到动态代理的知识&#xff0c;所以先来理一下动态代理的知识。 代理模式想必大家耳熟能详&#xff0c;一个代理类持有目标对象的引用&#xff0c;在执行目标方法前后加一点别…

开源模型应用落地-工具使用篇-Spring AI-高阶用法(九)

一、前言 通过“开源模型应用落地-工具使用篇-Spring AI-Function Call&#xff08;八&#xff09;-CSDN博客”文章的学习&#xff0c;已经掌握了如何通过Spring AI集成OpenAI以及如何进行function call的调用&#xff0c;现在将进一步学习Spring AI更高阶的用法&#xff0c;如…

易点易动固定资产管理系统如何为企业固定资产管理保驾护航

固定资产作为企业重要的资产组成部分,它直接影响企业的资金流动和经营发展。然而在传统的管理模式下,固定资产管理效率低下、盲区众多,资产利用率和价值体现不佳。易点易动智能化固定资产管理系统应运而生,为企业固定资产管理保驾护航,帮助企业实现资产高效管控、规避经营风险。…

数组与指针之二——二级指针之一

定义是这样&#xff1a; 多级指针&#xff08;二级指针&#xff09;&#xff0c;C语言多级指针的用法详解 (biancheng.net) 这是针对变量&#xff0c;且是一级一级的取的。但是我们经常要面对数组&#xff0c;用到二级指针。如前面第一篇所述&#xff0c;对一维数组名取地址&…

用于回归的概率模型

机器学习中的回归方法&#xff1a; 机器学习中的概率模型 机器学习&#xff5c;总结了11种非线性回归模型&#xff08;理论代码可视化&#xff09; 高斯过程回归&#xff1a; Gaussian Processes for Machine Learning GPML——Datasets and Code Gaussian Processes 学…

windows@查看主机名@查看IP地址

文章目录 计算机名获取ip地址方式0(最可靠)方式1方式2 查看到多个ip安装了vmware其他情况 计算机名 开始菜单中直接搜索计算机名可以进入到设置查看 更通用的办法是打开cmd或powershell 输入hostname.exe PS>HOSTNAME.EXE ColorfulCxxu返回的ColorfulCxxu就是计算机名 或…

EdgeX Foundry - 连接 Modbus 设备

文章目录 一、概述1.安装说明2.Modbus Slave 工具 二、连接 Modbus 设备1.docker-comepse2.设备配置文件3.启动 EdgeX Foundry4.访问 UI4.1. consul4.2. EdgeX Console 5.创建 Modbus 设备5.1.创建设备配置文件5.2.添加设备 6.测试6.1.命令6.2.事件6.3.读值 EdgeX Foundry # E…

Navicat连接数据库出现的问题

Navicat使用教程——连接/新建数据库、SQL实现表的创建/数据插入、解决报错【2059-authentication plugin‘caching_sha2_password’……】_2059authentication plugin-CSDN博客

优思学院|拉丁方实验设计是什么?

今天&#xff0c;我要给大家带来一个六西格玛实验设计的小窍门——拉丁方设计。这是一种巧妙的方式&#xff0c;帮助我们探索不同因素&#xff08;输入&#xff09;对结果&#xff08;输出&#xff09;的影响&#xff0c;同时巧妙地处理那些我们不想要的“噪音因素”。 想象一…