TensorFlow项目练手(三)——基于GRU股票走势预测任务

项目介绍

项目基于GRU算法通过20天的股票序列来预测第21天的数据,有些项目也可以用LSTM算法,两者主要差别如下:

  • LSTM算法:目前使用最多的时间序列算法,是一种特殊的RNN(循环神经网络),能够学习长期的依赖关系。主要是为了解决长序列训练过程中的梯度消失和梯度爆炸问题。简单来说,就是相比普通的RNN,LSTM能够在更长的序列中有更好的表现。
  • GRU算法:是一种特殊的RNN。和LSTM一样,也是为了解决长期记忆和反向传播中的梯度等问题而提出来的。相比LSTM,使用GRU能够达到相当的效果,并且相比之下更容易进行训练,能够很大程度上提高训练效率,因此很多时候会更倾向于使用GRU。

一、准备数据

1、获取数据

  1. 通过命令行安装yfinance
  2. 通过api获取股票数据
  3. 保存到csv中方便使用
import pandas_datareader.data as web
import datetime
import matplotlib.pyplot as plt
import pandas as pd
import numpy as np
plt.rcParams['font.sans-serif']='SimHei' #图表显示中文import yfinance as yf
yf.pdr_override() #需要调用这个函数# 1、获取股票数据
#上海的股票代码+.SS;深圳的股票代码+.SZ :
stock = web.get_data_yahoo("601318.SS", start="2022-01-01", end="2023-07-17")
# 保存到csv中
pd.DataFrame(data=stock).to_csv('./stock.csv')# 2、获取csv中的数据
features = pd.read_csv('stock.csv')
features = features.drop('Adj Close',axis=1)
features.head()

在这里插入图片描述

2、数据可视化

通过绘图的方式查看当前的数据情况

# 3、绘图看看收盘价数据情况
close=features["Close"]
# 计算20天和100天移动平均线:
short_rolling_close = close.rolling(window=20).mean()
long_rolling_close = close.rolling(window=100).mean()
# 绘制
fig, ax = plt.subplots(figsize=(16,9))   #画面大小,可以修改
ax.plot(close.index, close, label='中国平安')   #以收盘价为索引值绘图
ax.plot(short_rolling_close.index, short_rolling_close, label='20天均线')
ax.plot(long_rolling_close.index, long_rolling_close, label='100天均线')
#x轴、y轴及图例:
ax.set_xlabel('日期')
ax.set_ylabel('收盘价 (人民币)')
ax.legend()      #图例
plt.show()      #绘图

在这里插入图片描述

3、数据预处理

取出当前的收盘价,删除无用的日期元素

# 4、取出label值
labels = features['Close']
time = features['Date']
features = features.drop('Date',axis=1)
features.head()

在这里插入图片描述

进行数据的归一化

# 5、数据预处理
from sklearn import preprocessing
input_features = preprocessing.StandardScaler().fit_transform(features)
input_features

在这里插入图片描述

4、构建数据序列

由于RNN的算法要求我们要有一定的序列,来预测出下一个值,所以我们按照20天的数据作为一个序列

# 6、定义序列,[下标1-20天预测第21天的收盘价]
from collections import dequex = []
y = []seq_len = 20
deq = deque(maxlen=seq_len)
for i in input_features:deq.append(list(i))if len(deq) == seq_len:x.append(list(deq))x = x[:-1] # 取少一个序列,因为最后个序列没有答案
y = features['Close'].values[seq_len: ] #从第二十一天开始(下标为20)
time = time.values[seq_len: ] #从第二十一天开始(下标为20)x, y, time = np.array(x), np.array(y), np.array(time)
print(x.shape)
print(y.shape)
print(time.shape)

在这里插入图片描述

二、构建模型

1、搭建GRU模型

import tensorflow as tf
from tensorflow.keras import initializers
from tensorflow.keras import regularizers
from tensorflow.keras import layersfrom keras.models import load_model
from keras.models import Sequential
from keras.layers import Dropout
from keras.layers.core import Dense
from keras.optimizers import Adam# 7、搭建模型
model = tf.keras.Sequential()
model.add(layers.GRU(8,input_shape=(20,5), activation='relu', return_sequences=True,kernel_regularizer=tf.keras.regularizers.l2(0.01)))
model.add(layers.GRU(16, activation='relu', return_sequences=True,kernel_regularizer=tf.keras.regularizers.l2(0.01)))
model.add(layers.GRU(32, activation='relu', return_sequences=False,kernel_regularizer=tf.keras.regularizers.l2(0.01)))
model.add(layers.Dense(16,kernel_initializer='random_normal',kernel_regularizer=tf.keras.regularizers.l2(0.01)))
model.add(layers.Dense(1))
model.summary()

在这里插入图片描述

2、优化器和损失函数

# 优化器和损失函数
model.compile(optimizer=tf.keras.optimizers.Adam(0.001),loss=tf.keras.losses.MeanAbsoluteError(), # 标签和预测之间绝对差异的平均metrics = tf.keras.losses.MeanSquaredLogarithmicError()) # 计算标签和预测

3、开始训练

25%的比例作为验证集,75%的比例作为训练集

# 开始训练
model.fit(x,y,validation_split=0.25,epochs=200,batch_size=128)

在这里插入图片描述

4、模型预测

# 预测
y_pred = model.predict(x)
fig = plt.figure(figsize=(10,5))
axes = fig.add_subplot(111)
axes.plot(time,y,'b-',label='actual')
# 预测值,红色散点
axes.plot(time,y_pred,'r--',label='predict')
axes.set_xticks(time[::50])
axes.set_xticklabels(time[::50],rotation=45)plt.legend()
plt.show()

在这里插入图片描述

5、回归指标评估

from sklearn.metrics import mean_squared_error,mean_absolute_error,r2_score
from math import sqrt#回归评价指标
# calculate MSE 均方误差
mse=mean_squared_error(y,y_pred)
# calculate RMSE 均方根误差
rmse = sqrt(mean_squared_error(y, y_pred))
#calculate MAE 平均绝对误差
mae=mean_absolute_error(y,y_pred)
print('均方误差: %.6f' % mse)
print('均方根误差: %.6f' % rmse)
print('平均绝对误差: %.6f' % mae)

在这里插入图片描述

源代码

  • 源码查看

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/52495.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

分布式协议与算法——拜占庭将军问题

拜占庭将军问题 背景:以战国时期为背景 战国时期,齐、楚、燕、韩、赵、魏、秦七雄并立,后来秦国的势力不断强大起来,成了东方六国的共同威胁。于是,这六个国家决定联合,全力抗秦,免得被秦国各个…

51单片机(普中HC6800-EM3 V3.0)实验例程软件分析 实验二 LED闪烁

目录 前言 一、原理图及知识点介绍 二、代码分析 知识点四:delay(u16 i)这个函数为什么i1时,大约延时10us? 前言 已经是第二个实验了,上一个实验是点亮第一个LED灯,这个实验是LED的闪烁。 一、原理图及知识点介绍…

Android:自己写一个简单记事本

一、前言:我的app是点击加号跳转到另一个界面 那么我遇到的问题的是点击加号是一个从一个Fragment跳转到另一个Fragment跳转失败。 二、解决方案: //相应控件的监听里面实现跳转FragmentManager fragmentManagergetFragmentManager();fragmentManager.b…

Qt事件的传递顺序

事件的传递顺序 事件的传递顺序是这样的:先是事件过滤器,然后是该部件的event()函数,最后是该部件的事件处理函数。这里还要注意,event()函数和事件处理函数,是在该部件内进行重新定义的,而事件过滤器却是…

matlab使用教程(8)—绘制三维曲面图

1网格图和曲面图 MATLAB 在 x-y 平面中的网格上方使用点的 z 坐标来定义曲面图,并使用直线连接相邻的点。mesh 和surf 函数以三维形式显示曲面图。 • mesh 生成仅使用颜色来标记连接定义点的线条的线框曲面图。 • surf 使用颜色显示曲面图的连接线和面。 MATL…

基于人工智能的智能矿山解决方案

什么是智能矿山? 智能矿山是一种运用先进技术和智能化系统来管理和监控矿山运营的概念。它利用传感器、无线通信、数据分析和人工智能等技术,实现对矿山内部各个环节的实时监测、自动化控制和智能决策,从而提高矿山的效率、安全性和可持续性。…

Windows下JDK安装与环境变量配置

文章目录 每日一句正能量前言安装步骤配置环境变量验证环境变量是否配置成功后记 每日一句正能量 生命,就像一场永无休止的苦役,不要惧怕和拒绝困苦,超越困苦,就是生活的强者。任何经历都是一种累积,累积的越多,人就越成熟;经历的越多,生命就越有厚度。 本来不想写JDK的安装的&…

prometheus+grafana进行服务器资源监控

在性能测试中,服务器资源是值得关注一项内容,目前,市面上已经有很多的服务器资 源监控方法和各种不同的监控工具,方便在各个项目中使用。 但是,在性能测试中,究竟哪些指标值得被关注呢? 监控有…

用C语言构建一个数字识别卷积神经网络

卷积神经网络的具体原理和对应的python例子参见末尾的参考资料2.3. 这里仅叙述卷积神经网络的配置, 其余部分不做赘述,构建和训练神经网络的具体步骤请参见上一篇: 用C语言构建一个手写数字识别神经网路 卷积网络同样采用简单的三层结构,包括输入层con…

openpnp - 吸嘴站(Nozzle Tip Changer)的选择

文章目录 openpnp - 吸嘴站(Nozzle Tip Changer)的选择概述磁铁吸嘴库带抱轴的吸嘴库我的吸嘴库选择我的吸嘴库实现 - 磁铁吸嘴库吸嘴座主体吸嘴座上盖我的吸嘴库实现 - 带抱轴的吸嘴库吸嘴座主体拔吸嘴时的受力挡板抱轴层上盖备注END openpnp - 吸嘴站(Nozzle Tip Changer)的选…

解决 MySQL 删除数据后,ID 自增不连续问题

修复前 除了部分数据,导致后续新增的数据,ID 自增不连续 解决方案 执行下方 SQL 语句即可修复此问题,mbs_order为需要修复的表名 SET i0; UPDATE mbs_order SET id(i:i1); ALTER TABLE mbs_order AUTO_INCREMENT0;

Zebec APP:构建全面、广泛的流支付应用体系

目前,流支付协议 Zebec Protocol 基本明确了生态的整体轮廓,它包括由其社区推动的模块化 Layer3 构架的公链 Nautilus Chain、流支付应用 Zebec APP 以及 流支付薪酬工具 Zebec payroll 。其中,Zebec APP 是原有 Zebec Protocol 的主要部分&a…