【机器学习】在Python中进行K-Means聚类和层次聚类

Python中聚类算法API的使用指南

聚类分析是数据分析中一种常见的无监督学习方法,通过将相似的对象分组在一起,我们能够识别出数据集中的自然分群。本文将介绍如何使用Python中的聚类算法接口,KMeans层次聚类方法。

K-Means 聚类

K-Means是一种广泛使用的聚类算法,它的目标是将数据点分成K个组,使得组内的点彼此相似,而组间的点不相似。下面是如何使用K-Means聚类分析的步骤:

步骤一:导入必要的库

首先,需要导入KMeans类,它在sklearn.cluster模块中。

from sklearn.cluster import KMeans

步骤二:加载数据

我们使用pandas库来加载数据。确保数据文件的路径是正确的。

import pandas as pddf = pd.read_excel(CLUS_FILE_PATH, index_col=0)

步骤三:应用K-Means聚类

创建一个KMeans实例,并通过.fit()方法应用于数据。

kmeans = KMeans(n_clusters=3, random_state=0).fit(df)

步骤四:保存聚类结果

将聚类标签添加到原始数据框中,并保存到Excel文件。

df['Cluster'] = kmeans.labels_
df.to_excel('kmeans聚类分析结果.xlsx')

层次聚类

层次聚类是另一种常见的聚类方法,它通过构建一个多层次的嵌套分群树来组织数据,这个树被称为树状图(Dendrogram)。相对于K-Means,层次聚类不需要指定k值就可以完成聚类,但是要分类出标签的话,我们需要指定一个距离,如果两个样本超出这个距离则不属于同一类。

步骤一:导入库

导入进行层次聚类和绘制树状图所需的库。

from scipy.cluster.hierarchy import dendrogram, linkage, fcluster
from scipy.spatial.distance import pdist

步骤二:加载数据并计算距离矩阵

同样地,我们先加载数据,然后计算距离矩阵,使用欧式距离。

df = pd.read_excel(CLUS_FILE_PATH, index_col=0)
distance_matrix = pdist(df, metric='euclidean')

步骤三:执行层次聚类

使用linkage函数进行层次聚类,这里采用了’ward’方法。

Z = linkage(distance_matrix, method='ward')

步骤四:确定聚类数并保存结果

通过选择一个最大距离阈值来确定聚类数,并把聚类结果保存到Excel。

clusters = fcluster(Z, max_d=50, criterion='distance')
df['Cluster'] = clusters
df.to_excel('层次聚类分析结果.xlsx')

步骤五:绘制树状图并保存

最后,利用dendrogram函数绘制树状图,并保存为图片。

plt.figure(figsize=(10, 50))
dendrogram(Z, orientation='left', labels=df.index, leaf_rotation=0, leaf_font_size=10)
plt.title('层次聚类的树状图')
plt.ylabel('中药名称')
plt.xlabel('距离')
plt.tight_layout()
plt.savefig('层次聚类树状图.png')
plt.show()
层次聚类的树状图

我们可以看到,各个中药被层次聚类组织成了一颗一颗嵌套的树,这些树描述了不同中药之间的距离关系。
在这里插入图片描述

上面的步骤展示了如何使用Python进行K-Means聚类和层次聚类分析。聚类是一个强大的工具,可以帮助我们发现数据中的模式和结构。通过实践这些步骤,你会对聚类分析有更深的了解。

利用PCA降维以可视化聚类结果

绘图函数(可直接复制,然后按下文调用)

def plot_clus_2D(clustered_data, class_col, method):n_clusters = clustered_data[class_col].nunique()# 执行PCA降维,降至2维pca = PCA(n_components=2)data_reduced = pca.fit_transform(clustered_data.drop(columns=[class_col]))# 创建一个新的DataFrame来保存降维后的数据和聚类标签data_2D = pd.DataFrame(data_reduced, columns=['PC1', 'PC2'])data_2D[class_col] = clustered_data[class_col].values# 设置绘图参数fig, ax = plt.subplots(figsize=(10, 8))# 为每个聚类设置不同的颜色colors = ['red', 'green', 'blue']  # 你可以根据需要的聚类数修改颜色if n_clusters > 3:  # 如果聚类数超过3,扩展颜色列表import matplotlib.colors as mcolorscolors = list(mcolors.TABLEAU_COLORS.values())[:n_clusters]# 绘制每个聚类的散点图for i in range(n_clusters):# 从聚类数据中提取当前聚类的数据cluster_data = data_2D[data_2D[class_col] == i]# 绘制散点图ax.scatter(cluster_data['PC1'], cluster_data['PC2'],color=colors[i], label=f'Cluster {i}', alpha=0.5)# 添加图例和标题ax.legend()ax.set_title(f'{method} 聚类结果 - PCA降维可视化(2D)')ax.set_xlabel('Principal Component 1')ax.set_ylabel('Principal Component 2')# 显示图表save_path = os.path.join(IMAGE_FOLDER, f'{method} 聚类结果 - PCA降维可视化(2D).png')plt.savefig(save_path)plt.show()def plot_clus_3D(clustered_data, class_col, method):""":param clustered_data: 带有聚类结果标签的数据集:param class_col: 代表聚类结果的列名:param n_clusters: 有多少个:param method::return:"""n_clusters = clustered_data[class_col].nunique()# 执行PCA降维,降至3维pca = PCA(n_components=3)data_reduced = pca.fit_transform(clustered_data.drop(columns=[class_col]))# 创建一个新的DataFrame来保存降维后的数据和聚类标签data_3D = pd.DataFrame(data_reduced, columns=['PC1', 'PC2', 'PC3'])data_3D[class_col] = clustered_data[class_col].values# 设置绘图参数fig = plt.figure(figsize=(10, 8))ax = fig.add_subplot(111, projection='3d')# 为每个聚类设置不同的颜色colors = ['red', 'green', 'blue']  # 根据需要的聚类数修改颜色if n_clusters > 3:  # 如果聚类数超过3,扩展颜色列表import matplotlib.colors as mcolorscolors = list(mcolors.TABLEAU_COLORS.values())[:n_clusters]# 绘制每个聚类的散点图for i in range(n_clusters):# 从聚类数据中提取当前聚类的数据cluster_data = data_3D[data_3D[class_col] == i]# 绘制散点图ax.scatter(cluster_data['PC1'], cluster_data['PC2'], cluster_data['PC3'],color=colors[i], label=f'Cluster {i}', alpha=0.5)# 添加图例和标题ax.legend()ax.set_title(f'{method} 聚类结果 - PCA降维可视化(3D)')ax.set_xlabel('Principal Component 1')ax.set_ylabel('Principal Component 2')ax.set_zlabel('Principal Component 3')# 显示图表save_path = os.path.join(IMAGE_FOLDER, f'{method}_聚类结果_PCA降维可视化(3D).png')plt.savefig(save_path)plt.show()

示例调用

clus_data = pd.read_excel('kmeans聚类分析结果.xlsx', index_col=0)
plot_clus_2D(clustered_data=clus_data, class_col='Cluster', method='K-means')
plot_clus_3D(clustered_data=clus_data, class_col='Cluster', method='K-means')clus_data = pd.read_excel('层次聚类分析结果.xlsx', index_col=0)
plot_clus_2D(clustered_data=clus_data, class_col='Cluster', method='层次聚类')
plot_clus_3D(clustered_data=clus_data, class_col='Cluster', method='层次聚类')

2D可视化

K-Means聚类结果

在这里插入图片描述

层次聚类结果

在这里插入图片描述

3D可视化

K-Means聚类结果

在这里插入图片描述

层次聚类结果

在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/525729.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

同步与异步

同步 通常情况代码都是自上向下一行一行执行的 前边的代码不执行后边的代码也不会执行 同步的代码执行会出现阻塞的情况 一行代码执行慢会影响到整个程序的执行1 解决同步问题 java python通过多线程来解决 node.js通过异步方式来解决 异步 一段代码的执行不会影响到其他的…

【C++】list模拟实现list迭代器失效问题

list模拟实现&list迭代器失效问题 一,list模拟实现1. list的主要框架接口模拟2. list构造&拷贝构造&析构3. list迭代器3.1 普通迭代器3.2 const迭代器 4. 增删查改 二,迭代器失效问题1. list的迭代器失效原因2. 解决办法 一,list…

想到2024年最有前景的副业创业机会?那这个项目你绝对不能错过!

大家好,我是电商花花。 现在看到别人要么都有自己的副业,要么都在做创业项目,你是不是也看的激情澎湃,想要做抖音小店,想要创业赚钱。 2024年做什么副业、创业有盼头?我觉得还得是抖音小店无货源这个电商…

Cookie、Session、Token、JWT

文章目录 1. Cookie1.1 为什么需要Cookie1.2 Cookie是什么1.3 Cookie机制 2. Session2.1 为什么需要Session2.2 Session机制 3. Token3.1 Token简介3.2 Token和Session的区别 4. JWT4.1 JWT简介4.2 JWT的数据结构与使用 5. Gin框架中JWT的使用5.1 安装5.2 使用 1. Cookie 1.1 为…

【滑动窗口】力扣239.滑动窗口最大值

前面的文章我们练习数十道 动态规划 的题目。相信小伙伴们对于动态规划的题目已经写的 得心应手 了。 还没看过的小伙伴赶快关注一下,学习如何 秒杀动态规划 吧! 接下来我们开启一个新的篇章 —— 「滑动窗口」。 滑动窗口 滑动窗口 是一种基于 双指…

Matlab|配电网智能软开关(sop)规划模型

目录 1 主要内容 目标函数 2 部分程序 3 程序结果 3.1 sop选址定容优化模型 3.2 对比算例(不含sop) 4 下载链接 1 主要内容 该程序参考文献《基于改进灵敏度分析的有源配电网智能软开关优化配置》,采用二阶锥算法,以改进的…

动态调整html表格每列宽度

为什么想自动计算列宽呢?因为我有一次拿到一个项目,它里面的列宽都是写死的。后来需要改,一个个的改太麻烦了。 诸如这样的表格在网站上非常常见。我们不对列做设置的话,列宽就会取每列文本内容的最大长度。在只有一条文本非常长…

ubuntu安装开源汇编调试器NASM

安装 安装很简单,直接在终端输入以下命令即可 sudo apt-get install nasm 安装完成后,如果可以查看到nasm的版本号即可视为安装成功 nasm -version 测试 创建汇编文件 创建一个asm文件 vim hello.asm 文件内容如下 section .datahello: db …

Linux随记(八)

一、crontab运行shell脚本,py脚本 (注意事项) 情景描述: 目前有个sh脚本他最初大致内容是。 cat t11.sh#!/bin/bash source /etc/profile /bin/python3 /tmp/1.py sh /tmp/1.sh echo -e "$(date %F)" >…

LeetCode148题:排序链表(python3)

在数组排序中,常见的排序算法有:冒泡排序、选择排序、插入排序、希尔排序、归并排序、快速排序、堆排序、计数排序、桶排序、基数排序等。 而对于链表排序而言,因为链表不支持随机访问,访问链表后面的节点只能依靠 next 指针从头…

2024-03-05 linux 分区老显示满,Use 100%,原因是SquashFS 是一种只读文件系统,它在创建时就已经被填满,所有空间都被使用。

一、这两天一直纠结一个问题,无论怎么修改,linux 分区老显示满,Use 100%,全部沾满。如下图的oem分区。 二、导致出现上面的原因是:SquashFS文件系统里的空间利用率总是显示为100%。 三、SDK里面也说明SquashFS文件系统…

昏暗场景增强-低照度增强-弱光增强(附代码)

引言 随着现代科技的发展,图像采集设备已经渗透到生活的方方面面,然而在昏暗场景、低照度或弱光条件下,图像的质量往往受到严重影响,表现为亮度不足、对比度低下、色彩失真以及细节丢失等问题。这类图像对于人眼识别和计算机视觉…