vivo全球商城:电商交易平台设计

一、背景

vivo官方商城经过了七年的迭代,从单体架构逐步演进到微服务架构,我们的开发团队沉淀了许多宝贵的技术与经验,对电商领域业务也有相当深刻的理解。

去年初,团队承接了O2O商城的建设任务,还有即将成立的礼品中台,以及官方商城的线上购买线下门店送货需求,都需要搭建底层的商品、交易和库存能力。

为节约研发与运维成本,避免重复造轮子,我们决定采用平台化的思想来搭建底层系统,以通用能力灵活支撑上层业务的个性化需求。

包括交易平台、商品平台、库存平台、营销平台在内的一整套电商平台化系统应运而生。

图片

本文将介绍交易平台的架构设计理念与实践,以及上线后持续迭代过程中的挑战与思考。

二、整体架构

2.1 架构目标

除了高并发、高性能、高可用这三高外,还希望做到:

1.低成本

注重模型与服务的可重用性,灵活支撑各业务的个性化需求,提高开发效率,降低人力成本。

2.高扩展

系统架构简单清晰,应用系统间耦合低,容易水平扩展,业务功能增改方便快捷。

2.2 系统架构

(1)电商平台整体架构中的交易平台

图片

(2)交易平台系统架构

图片

2.3 数据模型

图片

三、关键方案设计

3.1 多租户设计

(1)背景和目标

    • 交易平台面向多个租户(业务方),需要能够存储大量订单数据,并提供高可用高性能的服务。

    • 不同租户的数据量和并发量可能有很大区别,要能根据实际情况灵活分配存储资源。

(2)设计方案

    • 考虑到交易系统OLTP特性和开发人员熟练程度,采用MySQL作为底层存储、ShardingSphere作为分库分表中间件,将用户标识(userId)作为分片键,保证同一个用户的订单落在同一个库中。

    • 接入新租户时约定一个租户编码(tenantCode),所有接口都要带上这个参数;租户对数据量和并发量进行评估,分配至少满足未来五年需求的库表数量。

    • 租户与库表的映射关系:租户编码 -> {库数量,表数量,起始库编号,起始表编号}。

通过上面的映射关系,可以为每个租户灵活分配存储资源,数据量很小的租户还能复用已有的库表。

示例一

新租户接入前已有4库*16表,新租户的订单量少且并发低,直接复用已有的0号库0号表,映射关系是:租户编码-> 1,1,0,0

示例二

新租户接入前已有4库*16表,新租户的订单量多但并发低,用原有的0号库中新建8张表来存储,映射关系是:租户编码-> 1,8,0,16

示例三

新租户接入前已有4库16表,新租户的订单量多且并发高,用新的4库8表来存储,映射关系是:租户编码-> 4,8,4,0

图片

用户订单所属库表计算公式

  • 库序号 = Hash(userId) / 表数量 % 库数量 + 起始库编号
  • 表序号 = Hash(userId) % 表数量 + 起始表编号

可能有小伙伴会问:为什么计算库序号时要先除以表数量?下面的公式会有什么问题?

  • 库序号 = Hash(userId) % 库数量 + 起始库编号
  • 表序号 = Hash(userId) % 表数量 + 起始表编号

答案是,当库数量和表数量存在公因数时,会存在倾斜问题,先除以表数量就能剔除公因数。

以2库4表为例,对4取模等于1的数,对2取模也一定等于1,因此0号库的1号表中不会有任何数据,同理,0号库的3号表、1号库的0号表、1号库的2号表中都不会有数据。

路由过程如下图所示:

图片

(3)局限性和应对办法

  • 全局唯一ID

问题:分库分表后,数据库自增主键不再全局唯一,不能作为订单号来使用。且很多内部系统间的交互接口只有订单号,没有用户标识这个分片键。

方案:如下图所示,参考雪花算法来生成全局唯一订单号,同时将库表编号隐含在其中(两个5bit分别存储库表编号),这样就能在没有用户标识的场景下,从订单号中获取库表编号。

图片

  • 全库全表搜索

问题:管理后台需要根据各种筛选条件,分页查询所有满足条件的订单。

方案:将订单数据冗余存储一份到搜索引擎Elasticsearch中,满足各种场景下的快速灵活查询需求。

3.2 状态机设计

(1)背景

  • 之前做官方商城时,由于是定制化业务开发,各类型的订单和售后单的状态流转都是写死的,比如常规订单在下单后是待付款,付款后是待发货,发货后是待收货;虚拟商品订单不需要发货,没有待发货状态。

  • 现在要做的是平台系统,不可能再为每个业务方做定制化开发,否则会导致频繁改动发版,代码错综冗余。

(2)目标

  • 引入订单状态机,能为每个业务方配置多套差异化的订单流程,类似于流程编排。

  • 新增订单流程时,尽可能不改动代码,实现状态和操作的可复用性。

(3)方案

  • 在管理后台为每个租户维护一系列订单类型,数据转化为JSON格式存储在配置中心,或存储在数据库并同步到本地缓存中。

  • 每个订单类型的配置包括:初始订单状态,以及每个状态下允许的操作和操作之后的目标状态。

  • 当订单在执行某个动作时,使用订单状态机来修改订单状态。

    订单状态机的公式是:StateMachine(E,S —> A , S’),表示订单在事件E的触发下执行动作A,并从原状态S转化为目标状态S’

  • 每个订单类型配置完成后,生成数据的结构是

/*** 订单流程配置**/
@Data
public class OrderFlowConfig implements Serializable {/*** 初始订单状态编码**/private String initStatus;/*** 每个订单状态下,可执行的操作及执行操作后的目标状态* Map<原状态编码, Map<订单操作类型编码, 目标状态编码>>*/private Map<String, Map<String, String>> operations;
}
  • 订单商品行状态机、售后单状态机,也用同样的方式实现

3.3 通用操作触发器

(1)背景

业务中通常都会有这样的延时需求,我们之前往往通过定时任务来扫描处理。

  • 下单后多久未支付,自动关闭订单
  • 申请退款后商家多久未审核,自动同意申请
  • 订单签收后多久未确认收货,自动确认收货

(2)目标

  • 业务方有类似的延时需求时,能够有通用的方式轻松实现

(3)方案

设计通用操作触发器,具体步骤为:

  1. 配置触发器,粒度是状态机的流程类型。

  2. 创建订单/售后单时或订单状态变化时,如果有满足条件的触发器,发送延迟消息。

  3. 收到延迟消息后,再次判断执行条件,执行配置的操作。

触发器的配置包括:

  1. 注册时间:可选订单创建时,或订单状态变化时

  2. 执行时间:可使用JsonPath表达式选取订单模型中的时间,并可叠加延迟时间

  3. 注册条件:使用QLExpress配置,满足条件才注册

  4. 执行条件:使用QLExpress配置,满足条件才执行操作

  5. 执行的操作和参数

3.4 分布式事务

对交易平台而言,分布式事务是一个经典问题,比如:

  • 创建订单时,需要同时扣减库存、占用优惠券,取消订单时则需要进行回退。

  • 用户支付成功后,需要通知发货系统给用户发货。

  • 用户确认收货后,需要通知积分系统给用户发放购物奖励的积分。

我们是如何保证微服务架构下数据一致性的呢?首先要区分业务场景对一致性的要求。

(1)强一致性场景

比如订单创建和取消时对库存和优惠券系统的调用,如果不能保证强一致,可能导致库存超卖或优惠券重复使用。

对于强一致性场景,我们采用Seata的AT模式来处理,下面的示意图取自seata官方文档。

图片

(2)最终一致性场景

比如支付成功后通知发货系统发货,确认收货后通知积分系统发放积分,只要保证能够通知成功即可,不需要同时成功同时失败。

对于最终一致性场景,我们采用的是本地消息表方案:在本地事务中将要执行的异步操作记录在消息表中,如果执行失败,可以通过定时任务来补偿。

图片

3.5 高可用与安全设计

  • 熔断

使用Hystrix组件,对依赖的外部系统添加熔断保护,防止某个系统故障的影响扩大到整个分布式系统中。

  • 限流

通过性能测试找出并解决性能瓶颈,掌握系统的吞吐量数据,为限流和熔断的配置提供参考。

  • 并发锁

任何订单更新操作之前,会通过数据库行级锁加以限制,防止出现并发更新。

  • 幂等性

所有接口均具备幂等性,上游调用我们接口如果出现超时之类的异常,可以放心重试。

  • 网络隔离

只有极少数第三方接口可通过外网访问,且都有白名单、数据加密、签名验证等保护,内部系统交互使用内网域名和RPC接口。

  • 监控和告警

通过配置日志平台的错误日志报警、调用链的服务分析告警,再加上公司各中间件和基础组件的监控告警功能,让我们能够能够第一时间发现系统异常。

3.6 其他考虑

  • 是否用领域驱动设计

考虑到团队非敏捷型组织架构,又缺少领域专家,因此没有采用

  • 高峰期性能瓶颈问题

大促和推广期间,特别是爆款抢购时的流量可能会触发限流,导致部分用户被拒之门外。因为无法准确预估流量,难以提前扩容。

可以通过主动降级方案增加并发量,比如同步入库切为异步入库、db查询转为cache查询、只能查到最近半年的订单等。

考虑到业务复杂度和数据量级还处在初期,团队规模也难以支撑,这些设计有远期计划,但暂时还没做。(架构的合适性原则,杀鸡用牛刀,你愿意也行)。

四、总结与展望

我们在设计系统时并没有一味追求前沿技术和思想,面对问题时也不是直接采用业界主流的解决方案,而是根据团队和系统的实际状况来选取最合适的办法。好的系统不是在一开始就被大牛设计出来的,而是随着业务的发展和演进逐渐被迭代出来的。

目前交易平台已上线一年多,接入了三个业务方,系统运行平稳,公司内有交易/商品/库存等需求的新业务,以及存量业务在遇到系统瓶颈需要升级时,都可以复用这块能力。

上游业务方数量的增加和版本的迭代,对平台系统的需求源源不断,平台的功能得到逐渐完善,架构也在不断演进,我们正在将履约模块从交易平台中剥离出来,进一步解耦,为业务持续发展做好储备。

分享 vivo 互联网技术干货与沙龙活动,推荐最新行业动态与热门会议。 

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/53560.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

【单片机】51单片机,TLC2543,驱动程序,读取adc

TLC2543 是一款 12 位精密模数转换器 (ADC)。 1~9、11、12——AIN0&#xff5e;AIN10为模拟输入端&#xff1b; 15——CS 为片选端&#xff1b; 17——DIN 为串行数据输入端&#xff1b;&#xff08;控制字输入端&#xff0c;用于选择转换及输出数据格式&#xff09; 16——…

ChatGPT下架官方检测工具,承认无法鉴别AI内容

去年底&#xff0c;OpenAI 推出的 ChatGPT &#xff0c;带来了生成式人工智能涌现的热潮。它不仅能够协助完成撰写邮件、视频脚本、文案、翻译、代码等任务&#xff0c;还能通过学习和理解人类的语言来进行对话&#xff0c;并根据聊天的上下文进行互动。 但随之而来的争议也让人…

无向图-已知根节点求高度

深搜板子题&#xff0c;无向图&#xff0c;加边加两个&#xff0c;dfs输入两个参数变量&#xff0c;一个是当前深搜节点&#xff0c;另一个是父节点&#xff08;避免重复搜索父节点&#xff09;&#xff0c;恢复现场 ///首先完成数组模拟邻接表#include<iostream> #incl…

selenium 遇到更新chorme驱动

打开浏览器,在地址栏输入chrome://version/便可以查看到谷歌当前的版本号 谷歌浏览器驱动的下载网址 http://chromedriver.storage.googleapis.com/index.htmlhttp://chromedriver.storage.googleapis.com/index.html 解压后把chromedriver.exe 放到python安装的目录下&am…

openGauss学习笔记-30 openGauss 高级数据管理-别名

文章目录 openGauss学习笔记-30 openGauss 高级数据管理-别名30.1 语法格式30.1.1 列别名语法30.1.2 表别名语法 30.2 参数说明30.3 示例 openGauss学习笔记-30 openGauss 高级数据管理-别名 SQL可以重命名一张表或者一个字段的名称&#xff0c;这个名称为该表或该字段的别名。…

本地pycharm远程连接服务器运行自己的项目

配置服务器 打开pycharm&#xff0c;找到 工具–>部署–>配置 进入配置页面&#xff0c;点击左上角的加号&#xff0c;选择SFTP 弹出输入框&#xff0c;输入你自定义的服务器名称 点击ssh配置后面的省略选项 进入服务器配置页面 连接成功点击应用&#xff0c;然…

抖音seo矩阵系统源码搭建开发详解

抖音SEO矩阵系统是一个用于提高抖音视频在搜索引擎排名的工具。如果你想开发自己的抖音SEO矩阵系统&#xff0c;以下是详细的步骤&#xff1a; 开发步骤详解&#xff1a; 确定你需要的功能和算法 抖音SEO矩阵系统包含很多功能&#xff0c;比如关键词研究、内容优化、链接建设、…

RPC原理与Go RPC详解

文章目录 RPC原理与Go RPC什么是RPC本地调用RPC调用HTTP调用RESTful API net/rpc基础RPC示例基于TCP协议的RPC使用JSON协议的RPCPython调用RPC RPC原理 RPC原理与Go RPC 什么是RPC RPC&#xff08;Remote Procedure Call&#xff09;&#xff0c;即远程过程调用。它允许像调用…

当服务器域名出现解析错误的问题该怎么办?

​  域名解析是互联网用户接收他们正在寻找的域的地址的过程。更准确地说&#xff0c;域名解析是人们在浏览器中输入时使用的域名与网站IP地址之间的转换过程。您需要站点的 IP 地址才能知道它所在的位置并加载它。但&#xff0c;在这个过程中&#xff0c;可能会出现多种因素…

用html+javascript打造公文一键排版系统14:为半角和全角字符相互转换功能增加英文字母、阿拉伯数字、标点符号、空格选项

一、实际工作中需要对转换选项细化内容 在昨天我们实现了最简单的半角字符和全角字符相互转换功能&#xff0c;就是将英文字母、阿拉伯数字、标点符号、空格全部进行转换。 在实际工作中&#xff0c;我们有时只想英文字母、阿拉伯数字、标点符号、空格之中的一两类进行转换&a…

ruoyi-cloud-notes01

1、Maven中的dependencyManagement Maven中的dependencyManagement元素提供了一种管理依赖版本号的方式。在dependencyManagement元素中声明所依赖的jar包的版本号等信息&#xff0c;那么所有子项目再次引入此依赖jar包时则无需显式的列出版本号。Maven会沿着父子层级向上寻找…

【C#学习笔记】值类型(2)

文章目录 Struct结构体类型为什么不推荐struct 元组类型可为空的值类型从可为空的值类型转换为基础类型提升的运算符如何确定可为空的值类型为什么建议少用T?装箱和取消装箱 Struct结构体类型 结构类型&#xff08;“structure type”或“struct type”&#xff09;是一种可封…