GPT实战系列-LangChain构建自定义Agent

GPT实战系列-LangChain构建自定义Agent

LangChain

GPT实战系列-LangChain如何构建基通义千问的多工具链

GPT实战系列-构建多参数的自定义LangChain工具

GPT实战系列-通过Basetool构建自定义LangChain工具方法

GPT实战系列-一种构建LangChain自定义Tool工具的简单方法

GPT实战系列-搭建LangChain流程简单应用

GPT实战系列-简单聊聊LangChain搭建本地知识库准备

GPT实战系列-LangChain + ChatGLM3构建天气查询助手

GPT实战系列-大模型为我所用之借用ChatGLM3构建查询助手

GPT实战系列-简单聊聊LangChain

大模型查询工具助手之股票免费查询接口

随着OpenAI的GPT-4这样的大型语言模型(LLMs)已经风靡全球,现在让它们自动执行各种任务,如回答问题、翻译语言、分析文本等。LLMs是在交互上真正体验到像“人工智能”。

如何管理这些模块呢?

LangChain在这方面发挥重要作用。LangChain使构建由LLMs驱动的应用程序变得简单,使用LangChain,可以在统一的界面中轻松与不同类型的LLMs进行交互,管理模型版本,管理对话版本,并将LLMs连接在一起。

在这里插入图片描述

定义Tools

同前篇所示,实现一个自定义工具 Tools,首先需要做一些配置初始化的工作,导入langchain相关的包。

from langchain.agents import tool@tool
def get_word_length(word: str) -> int:"""Returns the length of a word."""return len(word)tools = [get_word_length]

构建Prompt

实现代码,创建Prompt模版,配置大模型,以及输出解析函数。

from langchain_core.prompts import ChatPromptTemplate, MessagesPlaceholderprompt = ChatPromptTemplate.from_messages([("system","You are very powerful assistant, but don't know current events",),("user", "{input}"),MessagesPlaceholder(variable_name="agent_scratchpad"),]
)

加载LLM

Langchain对OpenAI支持最好,其他的,包括国产模型支持很弱,慎用。

from langchain_openai import ChatOpenAIllm = ChatOpenAI(model="gpt-3.5-turbo", temperature=0)llm_with_tools = llm.bind_tools(tools)

创建自定义Agent

把各碎片链接起来,建立Agent,

from langchain.agents.format_scratchpad.openai_tools import (format_to_openai_tool_messages,
)
from langchain.agents.output_parsers.openai_tools import OpenAIToolsAgentOutputParser
from langchain.agents import AgentExecutoragent = ({"input": lambda x: x["input"],"agent_scratchpad": lambda x: format_to_openai_tool_messages(x["intermediate_steps"]),}| prompt| llm_with_tools| OpenAIToolsAgentOutputParser()
)agent_executor = AgentExecutor(agent=agent, tools=tools, verbose=True)
print(list(agent_executor.stream({"input": "How many letters in the word eudca"})))

输出结果:


> Entering new AgentExecutor chain...Invoking: `get_word_length` with `{'word': 'eudca'}`5There are 5 letters in the word "eudca".> Finished chain.

LangChain是一个Python框架,可以使用LLMs构建应用程序。它与各种模块连接,使与LLM和提示管理,一切变得简单。

觉得有用 收藏 收藏 收藏

点个赞 点个赞 点个赞

End

GPT专栏文章:

GPT实战系列-实战Qwen通义千问在Cuda 12+24G部署方案_通义千问 ptuning-CSDN博客

GPT实战系列-ChatGLM3本地部署CUDA11+1080Ti+显卡24G实战方案

GPT实战系列-Baichuan2本地化部署实战方案

GPT实战系列-让CodeGeeX2帮你写代码和注释_codegeex 中文-CSDN博客

GPT实战系列-ChatGLM3管理工具的API接口_chatglm3 api文档-CSDN博客

GPT实战系列-大话LLM大模型训练-CSDN博客

GPT实战系列-LangChain + ChatGLM3构建天气查询助手

GPT实战系列-大模型为我所用之借用ChatGLM3构建查询助手

GPT实战系列-P-Tuning本地化训练ChatGLM2等LLM模型,到底做了什么?(二)

GPT实战系列-P-Tuning本地化训练ChatGLM2等LLM模型,到底做了什么?(一)

GPT实战系列-ChatGLM2模型的微调训练参数解读

GPT实战系列-如何用自己数据微调ChatGLM2模型训练

GPT实战系列-ChatGLM2部署Ubuntu+Cuda11+显存24G实战方案

GPT实战系列-Baichuan2等大模型的计算精度与量化

GPT实战系列-GPT训练的Pretraining,SFT,Reward Modeling,RLHF

GPT实战系列-探究GPT等大模型的文本生成-CSDN博客

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/535642.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

AI减肥小助手:科学减重,启动更美好的自己

AI健身伙伴助力减肥大计 新的一年开始了,看完《热辣滚汤》是不是已经迫不及待地计划着自己的新年目标了呢? 如果您的其中一个目标是减肥,那么今年就让AI成为您的年度健身伙伴吧!在本文中,我们将分享如何利用AI来制定并…

银河麒麟V10SP3操作系统-网络时间配置

1、动态网络配置 打开终端,以网口 eth0 为例: nmcli conn add connection.id eth0-dhcp type ether ifname eth0 ipv4.method auto其中“eth0-dhcp”为连接的名字,可以根据自己的需要命名方便记忆和操作 的名字;“ifname eth0”…

基于SpringBoot+MYSQL的旅游网站

目录 1、前言介绍 2、主要技术 3、系统流程分析 1、登录流程图如下: 2、管理员后台管理流程图如下: 3. 修改密码流程图如下: 4、系统设计 4.1、系统结构设计 4.2 数据库概述 4.2.1 数据库概念设计 4.2.2 数据库逻辑设计 5、运行截…

在Linux中进行OpenSSH升级

由于OpenSSH有严重漏洞,因此需要升级OpenSSH到最新版本。 OpenSSL和OpenSSH都要更新,OpenSSH依赖于OpenSSL。 第一步,查看当前的OpenSSH服务版本。 命令:ssh -V 第二步,安装、启动telnet,关闭安全文件&a…

案例分析篇12:可靠性设计考点(2024年软考高级系统架构设计师冲刺知识点总结系列文章)

专栏系列文章推荐: 2024高级系统架构设计师备考资料(高频考点&真题&经验)https://blog.csdn.net/seeker1994/category_12593400.html 【历年案例分析真题考点汇总】与【专栏文章案例分析高频考点目录】(2024年软考高级系统架构设计师冲刺知识点总结-案例分析篇-…

【C++那些事儿】深入理解C++类与对象:从概念到实践(下)| 再谈构造函数(初始化列表)| explicit关键字 | static成员 | 友元

📷 江池俊:个人主页 🔥 个人专栏:✅C那些事儿 ✅Linux技术宝典 🌅 此去关山万里,定不负云起之望 文章目录 1. 再谈构造函数1.1 构造函数体赋值1.2 初始化列表1.3 explicit 关键字 2. static成员2.1 概念…

【NestJS 编程艺术】3. 探索NestJS的高效开发:nest-cli的全面指南

在现代的 Node.js 服务端开发中,NestJS 以其优雅的架构和强大的功能集成为了开发者的首选框架之一。而这一切的起点,都始于nestjs/cli这个强大的命令行工具。本文将深入探讨nest-cli的核心功能,帮助开发者高效地创建、构建和管理 NestJS 项目…

Unity2019.2.x 导出apk 安装到安卓Android12+及以上的系统版本 安装出现-108 安装包似乎无效的解决办法

Unity2019.2.x 导出apk 安装到安卓Android12及以上的系统版本 安装出现-108 安装包似乎无效的解决办法 导出AndroidStudio工程后 需要设置 build.gradle文件 // GENERATED BY UNITY. REMOVE THIS COMMENT TO PREVENT OVERWRITING WHEN EXPORTING AGAINbuildscript {repositor…

性能测试总结 —— 测试流程篇!

本文主要介绍下性能测试的基本流程,性能测试从实际执行层面来看,测试的过程一般分为这么几个阶段,如下图:       下面分别介绍下每个阶段具体需要做什么: 一、性能需求分析: 性能需求分析是整个性能…

MYSQL 主从不一致的原因分析

数据库作为存储数据的组件,数据的一致性一定是要保证的前提,今天给出两个场景来分析数据不一致的原因。 binlog同步模式导致主从不一致 在MYSQL 中主库向从库同步数据是利用binlog记录修改操作,然后将binlog传递给从库进行复制,…

独家原创!微电网OR综合能源系统用户用电行为分析程序代码!

适用平台:MatlabYalmipCplex 程序以含分布式新能源、储能、微型燃气轮机作为主要电力来源,以照明设备、电视、洗衣机和空调等主要家庭用电设备作为电负荷,仿真了3种典型家庭用户的用电行为。程序算例丰富、注释清晰、干货满满,可…

(done) NLP “bag-of-words“ 方法 (带有二元分类和多元分类两个例子)词袋模型、BoW

一个视频:https://www.bilibili.com/video/BV1mb4y1y7EB/?spm_id_from333.337.search-card.all.click&vd_source7a1a0bc74158c6993c7355c5490fc600 这里有个视频,讲解得更加生动形象一些 总得来说,词袋模型(Bow, bag-of-words) 是最简…