【PyTorch][chapter 22][李宏毅深度学习]【无监督学习][ WGAN]【理论二】

前言:

       本篇主要参考《Wasserstein GAN and the Kantorovich-Rubinstein Duality》

重点介绍一下 WGAN 的损失函数 是如何通过 Wasserstein Distance 变换过来的。

分为5步:

  1.     我们首先建立Wasserstein Distance         极小值形式,
  2.     经过对偶变换得到Wasserstein Distance  极大值形式,
  3.     通过Farkas 引理证明其二者是强对偶关系,
  4.    利用对偶形式的约束函数 对 极大值形式 进行变换,得到WGAN 损失函数形式
  5.    极大值的约束函数就是1-Lipschitz

 


   目录:

  1.         Earth Mover’s Distance
  2.         对偶形式(Dual Form)  
  3.         Farkas 引理(Farkas Theorem)
  4.         强对偶(Strong Duality)
  5.        传输成本的对偶( Dual Implementation)
  6.         对偶到WGAN
  7.          Lipschitz约束和Wasserstein 关系

一    Earth Mover’s Distance

         我们以任意两个离散的概率分布p,q 为例

     1.1 EMD 距离定义

        

           一种用来测量两个概率分布之间的距离度量。它主要应用在图像处理和语音信号处理领域。EMD问题可以通过线性规划来求解,其核心思想是将一个分布的密度通过“搬土”的方式转移到另一个分布的位置上,使得转移的代价最小。在这个过程中,每个点对之间的距离和转移的量共同决定了总的工作量,即EMD

                   

                                      

      优化的目标:  

                   求解r,使得W[p,q] 达到极小值

        其中:

                      p(x) :离散的随机分布,对应状态变量x的维度为l

                              (图像中就是对应每个像素值变化范围0-255)

                     q(y):   离散的随机分布,对应状态变量y的维度为l

                     \gamma(x,y)\sim\prod (P_r,P_{\theta}): 代表推土方案,是(P_r,P_{\theta})的联合概率分布函数

                      inf:    积分下限 ,等价于求极小值

               约束条件

                     

 

1. 2   矩阵表达形式

         

          \left \langle \right \rangle_F is Frobenius inner product: 两个大小相同的矩阵元素一一对应相乘并且相加

    1.3 EMD 向量表达形式

                

                 通过求解optimal transport plan \Gamma, 使得EMD 最小

             

              约束条件: A\Gamma =b

                  

    1.4    线性规划问题(LP: Linear Programming)

          通过上面我们可以看到EMD等价于LP问题:

        ​​​​​​​

               

  Python 有对应的LP 库,如下例子

# -*- coding: utf-8 -*-
"""
Created on Sun Mar 10 20:58:19 2024@author: cxf
"""import numpy as np
from scipy.optimize import linprogdef run():"""数学规划模型scppy.optimize.linprog"""c=np.array([-2,-3,5]).transpose()    #行列向量不影响求解A=np.array([[-2,5,-1],[1,3,1]])b=np.array([-10,12])Aeq=np.array([[1,1,1]])    # 单个约束也要表示为矩阵形式beq=np.array([7])x=linprog(c,A,b,Aeq,beq,method='highs',bounds=np.array([[0,None],[0,None],[0,None]]))print(x)def main():'''LINPROG_METHODS = ['simplex','revised simplex','interior-point', 'highs', 'highs-ds','highs-ipm']Returns-------None.'''print("\n ------1--------")P_r = np.array([[0.1,0.9]]).transpose()P_t = np.array([[0.5,0.5]]).transpose()D = np.array([[0.0,1.0],[1.0,0.0]])L,L = D.shapeC = D.reshape((L**2,1))print("\n  C: distance |x-y| 功能 \n",C)A_r = np.zeros((L,L,L))A_t = np.zeros((L,L,L))for i in range(L):for j in range(L):A_r[i,i,j]=1A_t[i,j,i]=1#Aeq是约束条件aeq = np.concatenate((A_r.reshape(L,L**2),A_t.reshape(L,L**2)),axis=0)print("\n 约束条件:Ax=b: \n",aeq,aeq.shape)#b 就是Pr,Pg 的概率分布组成一列beq =  np.concatenate((P_r,P_t),axis=0)print("\n   vec(pr,pg) :\n",beq)bound = np.repeat([[0.0,1.0]],L*L,axis=0)print("\n 0=<x<1 \n",bound)#x[L*L,1]#bounds=boundopt_res= linprog(C,A_eq=aeq, b_eq=beq, method='highs-ds',bounds=bound)emd = opt_res.fun#gamma = opt_res.x.reshape((1,1))print("\n x:\n ",opt_res.x)print("\n-----------")
main()


二 对偶形式(Dual Form)

        

            原始形式 问题:

         不幸的是,这种优化在很多情况下并不实用,尤其是在通常使用 GAN 的领域。在我们的示例中,我们使用具有十种可能状态的一维随机变量。可能的离散状态的数量随着输入变量的维度数量呈指数级增长。对于许多应用,例如图像,输入很容易就有数千个维度。即使是近似值那么几乎是不可能的。但实际上我们并不关心。我们只想要一个数字,即 EMD。此外,我们想用它来训练我们的生成器网络,该网络生成分布,为此,我们必须能够计算梯度。自从p和q只是我们优化的限制,这不可能以任何直接的方式实现. 事实证明,还有另一种更方便的 EMD 计算方法。任何 LP 有两种方式可以表述问题:我们刚才使用的原始形式和对偶形式。

       证明:

设    A^Ty \leq c

         z=c^Tx \geq \begin{pmatrix} A^Ty \end{pmatrix}^Tx

                          \geq y^TAx

                          \geq y^Tb

           因为y^Tb 是标量,所以 \tilde{z}=b^Ty \leq z

         

   这种形式也称为弱对偶形式,那是否有强对偶使得z=\tilde{z}  


三    Farkas 引理

       强对偶形式的证明,主要用到称之为“Farkas 引理”的结论:

       对 \forall A \in R^{m\times n}, 以下两个命题是互斥的:

     3.1 引理一:   向量b在凸锥C内

          矩阵 A=\begin{bmatrix} a_1 &a_2 & ... & a_n \end{bmatrix}  由n个m维的列向量组成

          向量  x=\begin{bmatrix} \alpha_1\\ \alpha_2 \\ ... \\ \alpha_n \end{bmatrix}  由n个非负标量组成 

          Ax=\alpha_1a_1+\alpha_2a_2+...+\alpha_na_n 

          a_1,a_2,...a_n的非负系数的线性组合是一个凸锥C

      如上图:

         a_1,a_2 两个向量顶点连接起来可以组成一个凸锥C,

两者通过非负的线性系数相加得到的a_3 也一定落在该凸锥C 内

同理:   Ax=b(x\geq0) 

非负的线性组合a_1,a_2,..a_n 组成了凸锥C,b由该非负的线性组合得到,也落在该凸锥C内.

 

   3.2 引理二  :b在凸锥C外

     

          A^Ty \leq 0  :  、  A^Ty=\begin{bmatrix} a_1^Ty\leq0\\ a_2^Ty\leq0 \\ ... \\ a_n^Ty\leq0 \end{bmatrix}

                        向量y在凸锥C外,向量y与该凸锥C中任意向量夹角大于90  

          b^Ty> 0:   

                            b^Ty=|b||y|cos\theta,向量 b,y 夹角小于90度, 所以向量b 在凸锥C外

               

                     也可以用下图表示

                          

   


四 强对偶(Strong Duality)

      

             

                Farkas 两条引理:

            ​​​​​​​

            我们要利用Farkas 两条引理 , 证明的是 \hat{z}  可以无限接近 z

  证明:

      假设原始问题的最优解为z^{*}=c^Tx^*,我们定义:

   

        其中 \epsilon,\alpha \in R

    4.1 当 \epsilon =0 时,满足   Farkas case (1)

                 因为 \hat{A}x^*=\hat{b_0} 

                \begin{bmatrix} Ax^*\\ -c^Tx^* \end{bmatrix}=\begin{bmatrix} b\\ -z^*+0 \end{bmatrix}

         不满足Farkas case(2) 即

           \forall \hat{A}^T\hat{y} \leq 0,      \hat{b_0}^T\hat{y} \leq 0 ....(9)

   4.2 \epsilon >0 时,满足Farkas case(2)

               \hat{A}x=\begin{bmatrix} Ax\\-c^Tx\end{bmatrix}
.             因为z^* 已经是最小值了,不存在非负解,使得c^Tx=z^*-\epsilon(EMD为非负的值)

  所以Farkas case(1) 不成立, Farkas case(2) 成立。

               存在\hat{y}=\begin{bmatrix} y\\ \alpha \end{bmatrix} 使得 \hat{A}\hat{y}\leq 0\hat{b_{\epsilon }}\hat{y}>0

              

                 等价于: 推理2,推理3 

              ...(10)

                         \forall \hat{A}^T\hat{y} \leq 0,   \hat{b_{\epsilon }}^T\hat{y}=\hat{b_0}^T\hat{y}+\alpha \epsilon > 0 ...(11)

        当 \forall \hat{A}^T\hat{y} \leq 0,    根据式(9) \hat{b_0}^T\hat{y} \leq 0,  式(11)  \hat{b_{\epsilon }}^T\hat{y}=\hat{b_0}^T\hat{y}+\alpha \epsilon > 0

                得知\alpha>0,取\alpha=1

                         max_{y}\begin{Bmatrix} b^Ty|A^Ty \leq c & \end{Bmatrix} \geq z^*-\epsilon

                弱对偶形式:

                          z^* \geq max_{y}\begin{Bmatrix} b^Ty|A^Ty \leq c & \end{Bmatrix}

                 则:

                       z^*-\epsilon \leq max_{y}\begin{Bmatrix} b^Ty|A^Ty \leq c & \end{Bmatrix} \leq z^*

               \epsilon>0 是任意的,两者可以无限接近,从而

                      max_{y}\begin{Bmatrix} b^Ty|A^Ty \leq c & \end{Bmatrix} = z^*=min_x\begin{Bmatrix} c^Tx|Ax =b,x\geq 0\end{Bmatrix}


五:传输成本的对偶

      EMD 优化目标

            

   

      GAN 在图像处理里面,状态变量 x,和y 的范围一致,所以EMD 优化目标可以写成如下:

     

          根据约束条件:A^TF \leq C

       


六   对偶到WGAN

       我们得到最优传输成本的对偶形式

    

     因为 g(x) \leq -f(x), 同时 p(x),q(x)代表的是非负的概率(标量),所以

   

      等价于求解

    这便是我们最终要寻找的最优传输成本(1)的对偶形式了

   当c(x,y)=||x-y||,我们有 c[p,q]=W_1(p,q)

    

这就是WGAN所采用的W距离,于p,q 都是概率分布,因此我们可以写成采样形式

自然地,整个WGAN的训练过程就是


七 Lipschitz约束和Wasserstein 关系

     7.1 Lipschitz 函数定义

       当L =1 的时候 就是 WGAN的约束条件

    

         其中约束条件我们通常写为||f||_L \leq 1

参考:  

20 AI Projects for Kids That Will Blow Their Minds

https://www.cnblogs.com/yhxm/p/13047489.html

python模块:Scipy.optimize.linprog线性规划求解-CSDN博客

CSDN

从Wasserstein距离、对偶理论到WGAN - 科学空间|Scientific Spaces

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/536419.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Rabbit MQ详解

写在前面,由于Rabbit MQ涉及的内容较多&#xff0c;赶在春招我个人先按照我认为重要的内容进行一定总结&#xff0c;也算是个学习笔记吧。主要参考官方文档、其他优秀文章、大模型问答。自己边学习边总结。后面有时间我会慢慢把所有内容补全&#xff0c;分享出来也是希望可以给…

【bug mysql】‘mysql‘ 不是内部或外部命令,也不是可运行的程序 或批处理文件。

【bug mysql】‘mysql’ 不是内部或外部命令&#xff0c;也不是可运行的程序 或批处理文件。 mysql常规错误&#xff0c;安装好了没有设置环境变量&#xff0c;报错了“mysql 不是内部或外部命令&#xff0c;也不是可运行的程序 或批处理文件。” 解决办法&#xff1a; 添加M…

安装、配置MySQL

安装相关软件 MySQL Server、MySQL Workbench MySQL Server&#xff1a;专门用来提供数据存储和服务的软件 MySQL Workbench&#xff1a;可视化的 MySQL 管理工具 官网安装 https://www.mysql.com/ 官网 MySQL :: Download MySQL Installer 安装包路径 在这里选择版本和和对应…

【毕设级项目】基于嵌入式的智能家居控制板(完整工程资料源码)

基于嵌入式的智能家居控制板演示效果 基于嵌入式的智能家居控制板 前言&#xff1a; 随着科技的不断进步&#xff0c;物联网技术得到了突飞猛进的发展。智能家居是物联网技术的典型应用领域之一。智能家居系统将独立家用电器、安防设备连接成一个具有思想的整体&#xff0c;实现…

MyBatis3源码深度解析(十)MyBatis常用工具类(三)MetaObjectMetaClass

文章目录 3.4 MetaObject3.5 MetaClass 3.4 MetaObject MetaObject是MyBatis提供的反射工具类&#xff0c;可以方便地获取和设置对象的属性值。 该工具类在MyBatis源码中出现的概率非常高。 假设有两个实体类&#xff1a;用户信息User和订单信息Order&#xff0c;一个用户可…

速卖通批量注册买家号安全吗?怎么弄?

在速卖通等跨境电商平台上&#xff0c;买家号的注册与养号过程繁琐而复杂。传统的手动注册方式效率低下&#xff0c;难以满足大规模的需求。而跨境智星系统凭借其全自动化的功能&#xff0c;能够轻松实现买家号的批量注册与养号&#xff0c;大大提高了效率。 使用跨境智星系统进…

虹科Pico汽车示波器 | 免拆诊断案例 | 2015 款路虎神行者车熄火后散热风扇依旧高速运转

一、故障现象 一辆2015款路虎神行者车&#xff0c;搭载2.2 L发动机&#xff0c;累计行驶里程约为16万km。车主反映&#xff0c;车辆熄火后&#xff0c;散热风扇依旧高速运转&#xff0c;且无法停止。 二、故障诊断 接车后首先试车&#xff0c;故障现象的确存在。使用故障检…

KNN算法对鸢尾花进行分类:添加网格搜索和交叉验证

优化——添加网格搜索和交叉验证 from sklearn.datasets import load_iris from sklearn.model_selection import train_test_split from sklearn.preprocessing import StandardScaler from sklearn.neighbors import KNeighborsClassifier from sklearn.model_selection imp…

Kafka MQ broker和集群

Kafka MQ broker和集群 broker和集群 一个独立的 Kafka 服务器被称为 broker。broker 接收来自生产者的消息&#xff0c;为消息设置偏移量&#xff0c;并提交消息到磁盘保存。broker 为消费者提供服务&#xff0c;对读取分区的请求作出响应&#xff0c;返回已经提交到磁盘上的…

【网络安全】手机不幸被远程监控,该如何破解,如何预防?

手机如果不幸被远程监控了&#xff0c;用三招就可以轻松破解&#xff0c;再用三招可以防范于未然。 三招可破解可解除手机被远程监控 1、恢复出厂设置 这一招是手机解决软件故障和系统故障的终极大招。只要点了恢复出厂设置&#xff0c;你手机里后装的各种APP全部将灰飞烟灭…

Qt+FFmpeg+opengl从零制作视频播放器-14.程序Ubuntu移植

首先查看的是Linux系统的版本,我使用的是Ubuntu20.04.6LTS版本。 去Qt官网下载Qt 的版本。 这里下载的是5.12.12版本,双击运行,然后安装好Qt。 回想一下,在之前的程序,我们都是在Windows上开发,仅仅使用Qt和ffmpeg,Qt前面的步骤运行完成就可以安装好了,所以在linux上…

数字图像处理 使用C#进行图像处理九 实现傅里叶变换

一、简述 傅立叶变换将图像分解为其正弦和余弦分量。换句话说,它将图像从空间域变换到频率域。这个想法是任何函数都可以用无限正弦函数和余弦函数之和来精确近似。傅里叶变换是实现此目的的一种方法。 网上有很多关于傅里叶变换的文章,这里就不进行赘述了,这里主要结合代码…