【Numpy】练习题100道(26-50题)

#学习笔记#

在学习神经网络的过程中发现对numpy的操作不是非常熟悉,遂找到了Numpy 100题。

Git-hub链接

1.题目列表

26. 下面的脚本输出什么?(★☆☆)
print(sum(range(5),-1))
from numpy import *
print(sum(range(5),-1))
27. 考虑一个整数向量Z,以下哪些表达式是合法的?(★☆☆)
Z**Z2 << Z >> 2Z <- Z1j*ZZ/1/1Z<Z>Z
28. 下列表达式的结果是什么?(★☆☆)
np.array(0) / np.array(0) 
np.array(0) // np.array(0) 
np.array([np.nan]).astype(int).astype(float)
29. 如何将浮点数组向零的反方向四舍五入?(★☆☆)
30. 如何找到两个数组中的公共值?(★☆☆)
31. 如何忽略所有numpy警告(不推荐)?(★☆☆)
32. 下面的表达式是否为真?(★☆☆)
np.sqrt(-1) == np.emath.sqrt(-1)
33. 如何获取昨天、今天和明天的日期?(★☆☆)
34. 如何获取2016年7月的所有日期?(★★☆)
35. 如何就地计算((A+B)*(-A/2))(无拷贝)?(★★☆)
36. 使用4种不同的方法提取正数随机数组的整数部分 (★★☆)
37. 创建一个5x5的矩阵,其行值范围从0到4 (★★☆)
38. 考虑一个生成10个整数的生成器函数,并用它构建一个数组 (★☆☆)
39. 创建一个大小为10的向量,值从0到1,不包括0和1 (★★☆)
40. 创建一个大小为10的随机向量并对其进行排序 (★★☆)
41. 如何比np.sum更快地对小数组求和?(★★☆)
42. 考虑两个随机数组A和B,检查它们是否相等 (★★☆)
43. 将一个数组设置为只读 (★★☆)
44. 考虑一个随机的10x2矩阵表示笛卡尔坐标,将它们转换为极坐标 (★★☆)
45. 创建大小为10的随机向量,并将最大值替换为0 (★★☆)
46. 创建一个结构化数组,包含覆盖[0,1]x[0,1]区域的xy坐标 (★★☆)
47. 给定两个数组,X和Y,构造柯西矩阵C (Cij =1/(xi - yj)) (★★☆)
48. 打印每种numpy标量类型的最小和最大可表示值 (★★☆)
49. 如何打印数组的所有值?(★★☆)
50. 如何在向量中找到(给定标量的)最接近的值?(★★☆)

2.题解

26. 下面的脚本输出什么?(★☆☆)
print(sum(range(5),-1))
from numpy import *
print(sum(range(5),-1))

 1.输出9
2.输出10
解释:在导入numpy库前,sum的第二个参数的作用是初始值,所以相当于:-1 + 0 + 1 + 2 + 3 + 4
注意,这是初始值不是起始值,如果是sum(range(2,5),-1),实际上是: -1 + 2 + 3 + 4 

第二个print输出的是10,在导入了NumPy之后,使用的sum函数实际上是numpy.sum,而不是内置的sum。在NumPy的sum函数中,第二个参数(在这个案例中是-1)不是初始值,而是指定求和操作应该沿着哪个轴进行。当使用-1作为轴参数时,它指的是数组的最后一个轴。

27. 考虑一个整数向量Z,以下哪些表达式是合法的?(★☆☆)
Z**Z
2 << Z >> 2
Z <- Z
1j*Z
Z/1/1
Z<Z>Z
# 1.Z**Z是合法的,它表示Z的Z对应元素的次方
Z = np.array([1,2,3,4,5])
# Z**Z
# 输出:[1,4,27,256,3125]# 2.2 << Z >> 2是合法的,它表示Z的每个元素向左移动2位,再向右移动2位
2 << Z >> 2
# 输出:[1,2,4,8,16]# 3.Z <- Z是合法的,表示检查Z中的每个元素是否小于-Z结果是一个布尔数组
Z <- Z
# 输出:[False False False False False]# 4.1j*Z是合法的,它表示将每个元素的实部和虚部分别相乘
1j*Z
# 输出:[0.+1.j 0.+2.j 0.+3.j 0.+4.j 0.+5.j]# 5.Z/1/1是合法的,它表示将Z的每个元素除以1
Z/1/1
# 输出:[1. 2. 3. 4. 5.]# 6.Z<Z>Z不合法,在python中不能直接将比较运算符连续使用而不进行逻辑组合应当使用and  or 连接
28. 下列表达式的结果是什么?(★☆☆)
np.array(0) / np.array(0) 
np.array(0) // np.array(0) 
np.array([np.nan]).astype(int).astype(float)
np.array(0) / np.array(0)
# 会得到一个运行时警告,并且结果将是NaN(not a number)
# 因为在Numpy中除以0会产生一个无穷大的浮点数表示(inf),而当0除以0时,无法定义确切的数值,因此结果会被表示为NaN
# NaN表示不是一个数字,它是一个特殊的浮点数类型,用于表示浮点数计算中的错误情况。
# 值得注意的是,这是numpy的行为,而不是python内置出发运算符的行为。在python中,0除以0会抛出一个ZeroDivisionError异常。
np.array(0) // np.array(0)
# 会得到一个运行时警告,并且结果将是0
# 因为在Numpy中,整数除以整数的结果是一个整数,所以0除以0的结果是0,这只适用于整数除法,对于浮点数除法,结果仍然会是NaN
np.array([np.nan]).astype(int).astype(float)
# 会得到一个警告,结果是:-2.147484e+09
# 在numpy中,np.nan是一个特殊的浮点数类型,转化为整数时会得到一个负无穷大的整数值,而后转化为浮点数时,会得到一个浮点数能表示的最小数值
29. 如何将浮点数组向零的反方向四舍五入?(★☆☆) 
# 远离零点四舍五入可以使用numpy的'np.ceil'对正数和‘np.floor’对负数进行处理来表示,
# 反方向四舍五入,1.4得2,-1.1得-2,1.5得2,-1.6得-2
np.random.seed = 1
Z = np.array([1.523127,-0.973028,1.488869,1.135266,1.706664,-1.815817,0.917672,-0.813865,-0.270150,0.310724])
def round_away_from_zero(arr):# 对正数使用np.ceil,对负数使用np.floorreturn np.where(arr > 0, np.ceil(arr), np.floor(arr))round_away_from_zero(Z)
# 输出:[2.,-1.,2.,2.,2.,-2.,1.,-1.,-1.,1.]
30. 如何找到两个数组中的公共值?(★☆☆) 
# 可以使用Numpy的'np.intersect1d'函数来找到两个数组的交集
arr1 = np.array([1, 2, 3, 4, 5])
arr2 = np.array([4, 5, 6, 7, 8])
common_values = np.intersect1d(arr1, arr2)
print(common_values)
31. 如何忽略所有numpy警告(不推荐)?(★☆☆)
import warnings
# 忽略所有警告
warnings.filterwarnings("ignore")
32. 下面的表达式是否为真?(★☆☆)
np.sqrt(-1) == np.emath.sqrt(-1)

 不为真

np.sqrt: 当给定非负输入时,这个函数正常工作,返回输入的平方根。如果输入是负数,np.sqrt 会返回一个NaN(非数字),因为在实数范围内,负数没有平方根。
np.emath.sqrt: 这个函数专门用于处理更广泛的数学问题,包括负数的平方根。对于负数输入,np.emath.sqrt 返回一个复数结果。例如,np.emath.sqrt(-1) 会返回虚数单位 1j,这是因为在复数域中,负一的平方根被定义为虚数单位。
33. 如何获取昨天、今天和明天的日期?(★☆☆)
# 可以使用Numpy的'numpy.datetime64'和'numpy.timedelta64'对象来获取昨天、今天和明天的日期
today = np.datetime64('today', 'D') # 获取今天的日期
yesterday = today - np.timedelta64(1, 'D') # 获取昨天的日期
tomorrow = today + np.timedelta64(1, 'D') # 获取明天的日期
print("Today:", today)
print("Yesterday:", yesterday)
print("Tomorrow:", tomorrow)
# 输出结果:
# Today: 2024-03-14
# Yesterday: 2024-03-13
# Tomorrow: 2024-03-15
34. 如何获取2016年7月的所有日期?(★★☆)
# 可以使用numpy的date_range函数配合numpy.datetime64来获取2016年7月的所有日期
dates_july_2016 = np.arange('2016-07-01', '2016-08-02', dtype = 'datetime64[D]')
35. 如何就地计算((A+B)*(-A/2))(无拷贝)?(★★☆)
# 就地计算无拷贝意味着无新的空间被分配,计算结果直接覆盖了原始数据。
A = np.array([[1, 2, 3], [4, 5, 6]])
B = np.array([[7, 8, 9], [10, 11, 12]])B = A + B
B = B * -A / 2
print(B)
# 输出:[[ -4. -10. -18.]
#         [-28. -40. -54.]]
36. 使用4种不同的方法提取正数随机数组的整数部分 (★★☆)
A = np.random.rand(3, 4)
# 方法1: 使用np.floor函数.np.floor函数会向下取整,适用于正数
A_int_floor = np.floor(A)
# 方法2:使用np.trunc函数.np.trunc函数会截断小数部分,保留整数部分
A_int_trunc = np.trunc(A)
# 方法3:使用astype方法转换为整数类型
A_int_astype = A.astype(int)
# 方法4:使用np.round函数.np.round函数会四舍五入取整
A_int_round = np.round(A)
37. 创建一个5x5的矩阵,其行值范围从0到4 (★★☆)
# 整数
random_matrix = np.random.randint(0, 5, size=(5, 5))     # 在random.randint中,前两个参数控制生成的范围,size 是控制数组形状
# 浮点数
random_matrix_float = np.random.rand(5,5) * 4      # 在random.rand中,与randint不同,是控制形状的,因为其会默认生成0-1之间的随机浮点数
38. 考虑一个生成10个整数的生成器函数,并用它构建一个数组 (★☆☆)
random_matrix = np.random.randint(0, 10, size=(10,))
39. 创建一个大小为10的向量,值从0到1,不包括0和1 (★★☆)
# 可以直接使用np.random.rand函数生成,然后使用一些方法来控制其范围
vec = np.random.rand(10) * (1 - 0.02) + 0.01
40. 创建一个大小为10的随机向量并对其进行排序 (★★☆)
random_vec = np.random.rand(10)
sorted_vec = np.sort(random_vec)
41. 如何比np.sum更快地对小数组求和?(★★☆)
# 一般情况下,使用np.sum函数即可,如果追求更优可以使用np.einsum函数,其内部使用BLAS库来加速计算
import timearray = np.random.rand(1000000)
start = time.time()
np.sum(array)
end = time.time()
print('sum方法:',end - start)start1 = time.time()
np.einsum('i->',array)
end1 = time.time()
print('einsum方法:',end1 - start1)
# 输出结果:
# sum方法: 0.0010001659393310547
# einsum方法: 0.00099945068359375
42. 考虑两个随机数组A和B,检查它们是否相等 (★★☆)
A = np.random.rand(5)
B = np.random.rand(5)
# 严格相等
# 检查A和B是否完全相等
are_equal = np.array_equal(A, B)
print("A和B完全相等:", are_equal)# 近似相等
# 检查A和B是否近似相等
are_close = np.allclose(A, B, atol=1e-8)
print("A和B近似相等:", are_close)
43. 将一个数组设置为只读 (★★☆)
# 可以通过修改数组的flags.writeable属性来实现
# 创建一个随机数组
arr = np.random.rand(5)
# 打印原始数组
print("原始数组:", arr)
# 将数组设置为只读
arr.flags.writeable = False
# 尝试修改数组
try:arr[0] = 1
except ValueError as e:print("错误信息:", e)
# 输出结果:
# 原始数组: [0.60665849 0.58338168 0.69089184 0.66636523 0.22322251]
# 错误信息: assignment destination is read-only
44. 考虑一个随机的10x2矩阵表示笛卡尔坐标,将它们转换为极坐标 (★★☆)
# 在笛卡尔坐标系中的位置可以转换为极坐标系中的半径和角度
# 创建一个随机的10x2矩阵表示笛卡尔坐标
coords = np.random.rand(10, 2)r = np.sqrt(np.sum(coords**2, axis=1))  # 计算每个坐标点的模
theta = np.arctan2(coords[:, 1], coords[:, 0])  # 计算每个坐标点的角度
polar_coords = np.column_stack((r, theta))print('极坐标\n',polar_coords)
45. 创建大小为10的随机向量,并将最大值替换为0 (★★☆)
# 创建一个大小为10的随机向量
random_matrix = np.random.rand(10)
# 方法一
max_value = np.max(random_matrix)
random_matrix[random_matrix == max_value] = 0
# 方法二
max_index = np.argmax(random_matrix)
random_matrix[max_index] = 0
46. 创建一个结构化数组,包含覆盖[0,1]x[0,1]区域的xy坐标 (★★☆)
# 定义结构化数据类型,包含两个浮点数字段x和y
dtype = [('x', float), ('y', float)]# 创建一个结构化数组来覆盖[0,1]x[0,1]区域
# 例如,我们可以创建一个4x4的网格
num_points = 4
x_values = np.linspace(0, 1, num_points)
y_values = np.linspace(0, 1, num_points)# 使用网格的笛卡尔积来生成所有坐标点
grid = np.meshgrid(x_values, y_values)# 组合x和y坐标点并创建结构化数组
coordinates = np.zeros(num_points*num_points, dtype=dtype)
coordinates['x'], coordinates['y'] = grid[0].flatten(), grid[1].flatten()print("结构化数组的x和y坐标:")
print(coordinates)
47. 给定两个数组,X和Y,构造柯西矩阵C (Cij =1/(xi - yj)) (★★☆)
X = np.array([1, 2, 3, 4])
Y = np.array([4, 5, 6, 7])
# 将X变形为列向量,以便进行广播,利用广播机制可以有效避免显式编写嵌套循环
X  = X[:,np.newaxis]
C = 1.0/(X - Y)
print("柯西矩阵",C)
48. 打印每种numpy标量类型的最小和最大可表示值 (★★☆)
# 整数类型
integer_types = [np.int8, np.int16, np.int32, np.int64]
print("整数类型的最小和最大值:")
for int_type in integer_types:info = np.iinfo(int_type)print(f"{int_type.__name__:>10}: min = {info.min}, max = {info.max}")# 浮点数类型
float_types = [np.float16, np.float32, np.float64]
print("\n浮点数类型的最小和最大正值(非精确值):")
for float_type in float_types:info = np.finfo(float_type)print(f"{float_type.__name__:>10}: min = {info.min}, max = {info.max}")print(f"{float_type.__name__:>10}: smallest normal = {info.tiny}, largest positive = {info.max}")# 特殊注意:对于浮点数,最小值表示最小的正规化的浮点数。
# 浮点数还有更小的非正规化数,但它们具有较小的精度。
49. 如何打印数组的所有值?(★★☆)
# 默认情况下,大数组的打印都会被截断,可以使用numpy.set_printoptions函数来调整打印选项
# 通过设置参数'threshold'为numpy.inf,可以打印出所有元素
np.set_printoptions(threshold=np.inf)
large_array = np.random.rand(10000)
print(large_array)
50. 如何在向量中找到(给定标量的)最接近的值?(★★☆)
# 可以通过计算数组中每个元素与该标量的绝对差值,然后找到这些差值中最小的那个
x = np.random.randint(1,1000,size = 100)
target = 888x_ = np.abs(x - target)result = x[x_ == x_.min()]
print(result)

后续会更行全部100题

以上

学习在于行动,总结和坚持,共勉

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/537675.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

【更新】上市公司“宽带中国”战略数据集(2000-2022年)

参照李万利&#xff08;2022&#xff09;、薛成&#xff08;2020&#xff09;等人的做法&#xff0c;根据企业所在城市入选“宽带中国”试点战略的批次构建DID。如果样本期间内企业所在城市被评选为“宽带中国” 试点城市&#xff0c;则该地区企业样本在入选当年及以后年份取1&…

​LLM之新手入门:大预言模型的概念介绍与应用

最近&#xff0c;我在系统地学习大型语言模型&#xff08;LLM&#xff09;的相关知识。在这个学习过程中&#xff0c;我努力将所学的内容整理成博客文章。在这篇博客中&#xff0c;我首先简要介绍了人工智能的发展历史&#xff0c;然后探讨了大型模型的基本原理、训练方法、微调…

每日学习笔记:C++ STL 的forward_list

定义 特点 操作函数 元素查找、移除或安插 forward_list::emplace_after arg...指的是元素构造函数的参数&#xff08;0~N个&#xff09; #include <iostream> #include <memory> #include <list> #include <forward_list> using namespace std;class…

EditText不显示系统键盘,可用来显示自定义的键盘

系统键盘 包含普通键盘和现在很多ROM定制的密码安全键盘 调用已下方法即可解决: https://developer.android.google.cn/reference/android/widget/TextView#setShowSoftInputOnFocus(boolean) 但是,此方法是API 21Android 5.0加入的, 所以为了兼容低版本, 建议使用已下方法: p…

springboot整合最新版minio和minio的安装(完整教程,新人必看)

概述&#xff1a;这种东西&#xff0c;多写点&#xff0c;方便以后自己使用 目录 第一步&#xff1a;docker安装配置minio 第一步&#xff1a;拉取镜像 第二步&#xff1a;创建用于存储MinIO数据的卷 如果是最新版minio直接就使用最后的那个命令创建容器 第三步&#xff…

RabbitMQ 模拟实现【一】:需求分析

文章目录 消息队列消息队列消息队列的作用图解生产者消费者模型BrokerSever 内部涉及的关键概念交换机功能消费的实现方式数据存储方式网络通信消息应答模式 消息队列模拟实现Gitee网址 消息队列 采用 SpringBoot 框架实现 消息队列 通常说的消息队列&#xff0c;简称MQ&am…

json展示curl 请求接口返回结果

使用curl发送请求并将返回结果以JSON格式展示&#xff0c;通常需要确保请求的响应本身就是JSON格式。可以结合jq这个JSON处理工具来格式化输出。 首先要安装jq 工具。 Linux发行版中&#xff0c;你可以使用包管理器来安装它。 sudo yum install jq # 对于CentOS/RHEL 安装成…

多维时序 | Matlab实现VMD-CNN-GRU变分模态分解结合卷积神经网络门控循环单元多变量时间序列预测

多维时序 | Matlab实现VMD-CNN-GRU变分模态分解结合卷积神经网络门控循环单元多变量时间序列预测 目录 多维时序 | Matlab实现VMD-CNN-GRU变分模态分解结合卷积神经网络门控循环单元多变量时间序列预测预测效果基本介绍程序设计参考资料 预测效果 基本介绍 1.Matlab实现VMD-CN…

Unity Timeline学习笔记(3) - SignalTrack信号轨道和自定义带参数的Marker信号和轨道

信号轨道&#xff0c;顾名思义就是运行到某处发送一个信号。 普通用法 普通用法就是没有任何封装的&#xff0c;个人感觉特别难用&#xff0c;但是有必要理解一下工作原理。 添加信号 我们添加一个信号资源 生成后可以看到资源文件&#xff0c;这个是可以拖到SignalTrack上…

【Unity】persistentDataPath、streamingAssetsPath和dataPath

介绍 我们在用Unity进行开发时&#xff0c;资源路径是我们最常用到的&#xff0c;下面我就来简单介绍一下几种常用的路径。 1.dataPath dataPath是包含游戏数据文件夹的路径&#xff0c;是app程序包安装路径 Windows: xxx /Assets &#xff08;如下图&#xff09; Mac: xxx…

opencv dnn模块 示例(25) 目标检测 object_detection 之 yolov9

文章目录 1、YOLOv9 介绍2、测试2.1、官方Python测试2.1.1、正确的脚本2.2、Opencv dnn测试2.2.1、导出onnx模型2.2.2、c测试代码 2.3、测试统计 3、自定义数据及训练3.1、准备工作3.2、训练3.3、模型重参数化 1、YOLOv9 介绍 YOLOv9 是 YOLOv7 研究团队推出的最新目标检测网络…

MYSQL 是如何保证binlog 和redo log同时提交的?

MYSQL 一个事务在提交的时候能够保证binlog和redo log是同时提交的&#xff0c;并且能在宕机恢复后保持binlog 和redo log的一致性。 先来看看什么是redo log 和binlog&#xff0c;以及为什么要保持它们的一致性。 什么是redo log&#xff0c;binlog redo log是innodb引擎层…