西瓜书机器学习AUC与ℓ-rank(loss)的联系理解以及证明(通俗易懂)

前言

在学习到这部分时,对 ℓ-rank 以及AUC的关系难以理解透彻,在网上看到其他博主也并未弄明白,大家大多写自己的理解,我希望您在看完这篇文章时能够深刻理解这二者的关系,如果我的理解有误,希望您在评论区指正,给出您的见解。

首先理解什么是AUC?

首先理解什么是ROC曲线,ROC曲线如何绘制?

ROC曲线,即接收者操作特征曲线(Receiver Operating Characteristic Curve),反映了在不同分类阈值下真正类率(TPR)和假正类率(FPR)的变化情况。

绘制ROC曲线的过程如下:

  1. 给定m+个正例和m-个反例,首先将分类的阈值设置到最大,此时所有的例子预测结果都是反例,此时真正例率和假正例率均为0,在坐标原点(0,0)处标记一个点。
  2. 然后,逐步降低阈值,每次降低都将导致更多的样例被划分为正例。对于每个降低的阈值,计算当前的真正例率和假正例率,并在ROC图上标记相应的点。
  3. 最后,用线段连接这些点,即得ROC曲线。

通俗地说,分类阈值就像一个“门槛”,数据样本需要通过这个“门槛”才能被归类到某个类别中。在二分类问题中,模型通常会为每个样本输出一个概率值,表示该样本属于正例(比如:某种疾病的患者)的概率。这时,我们就需要选择一个阈值,来决定当这个概率达到多少时,我们就认为这个样本是正例。

例如,如果我们设定阈值为0.5,那么当模型输出的概率(概率就是模型对一个例子的判断,比如说10%可能是正例,90%是反例)大于或等于0.5时,我们就认为这个样本是正例(那么刚才认为10%为正例就不被认为是正例);如果小于0.5,则认为是负例(比如:非疾病患者)。

我们所做的就是逐渐把开始设定的正例阈值从100%逐渐降低到0。然后看模型的结果被划分为真正例与假正例的结果。(比如,有个正例,机器给的判断是50%概率是正例,那么他就会在之后我们把阈值降到50%时被纳入正例,此时,这是一个正例,模型判断也为正例,那么就被纳入真正例,如果是这是一个反例,模型给出50%概率的正例,那么此时应该别纳入假正例)。

在绘制ROC曲线时,我们会使用多个不同的阈值来计算真正例率(True Positive Rate,TPR)和假正例率(False Positive Rate,FPR)。TPR表示实际为正例的样本中被预测为正例的比例,而FPR表示实际为负例的样本中被错误地预测为正例的比例。通过改变阈值,我们可以得到不同的TPR和FPR组合,从而绘制出ROC曲线。

具体来说,从(0,0)开始,对于给定的m1个正例和m2个反例,根据预测结果进行排序,依次将这些样例划分为正例。若为**真正例,则y值增加1/m1,否则x值增加1/m2。**最后,将这些点连线,所得到的面积就是AUC。
在这里插入图片描述

什么是AUC

AUC(Area Under the Curve)曲线则是基于ROC曲线计算得到的。AUC值表示ROC曲线下的面积,用于量化评估模型的性能。AUC值越接近1,表示模型的性能越好。

ℓ-rank

在这里插入图片描述
先看这个表达式,我们需要理解一些东西

m+与m -, D +与D-,II

m +与m -分别对应正例与反例的个数。
D+与D-分别对应正例集与反例集。
II(罗马数字2),如果在II后括号中的为正确表达式,那么返回1,否则返回0。

f函数

f函数可以认为是被判断出来的先后,如果例子被先判断出来,那么函数的值大,反之就小
ℓ-rank被称为排序损失,为什么要叫排序损失呢?
我们不妨看看刚才的ROC曲线
如果是正例,那点就在上边,如果是反例,就在上一个点的右边,所以咱们最好的情况就是上来把所有的正例全部找出来,就是ROC曲线一直向上,最后才开始向右走。在这里插入图片描述
AUC表明的其实是一种顺序关系,即是在增大分类阈值(也就是让模型判断出来多少正例)时,正例会比反例被早判断出来的概率,也就是对正例的辨别能力,那这是如何在ROC曲线上体现出来的呢?我们以这个图的第二个点 为例子(假设它的坐标为(0.1)),我们可以发现在这个点的右侧,每一格(m,1)在ROC图线上都有对应的点,每个对应的点都是反例,这些反例就是在之后被发现的,因为从左下到右上,是分类阈值逐渐变大的过程,也就是相对偏后,那么,以我们这张图为例,在点(0,1)的右边的(20 - 0)* 1的矩阵(总共有20格)就是在指定阈值下正例比反例早被发现的概率(概率 需要归一化)。欸,那把所有的点的右侧部分的面积加起来归一化,不就是AOC,不就是正例比反例早发现的概率?在这里插入图片描述
同理可得,在上边我们可以知道,一个点垂直向上形成的单位宽度的矩阵就是对于一个反例来说,它比部分正例早发现的概率(需要归一化)。
于是,AUC曲线的另一种表示形式应为在这里插入图片描述

AUC = 1 - ℓ-rank

那么我们可以很轻易发现AUC与ℓ-rank的关系了,对于我们画的图AUC是右下侧,ℓ-rank是左上侧。
但是书上的还写了一个1/2 的等于项,这是为什么呢?

1/2项的来历

我们说到,ROC图线是不断增加阈值画点连线做成的图,那么他不一定是一个个例子来的,有可能阈值从1% -> 2%增加了两个例子,这两个例子得到的结果是,一个真正例,一个假正例,这导致真正例,假正例都增加了,这就形成了一个斜着的线,在左上,右下就形成了一个三角形,这就是1/2项的来历,此时,AUC也要加一个1/2的等于项。

证明请添加图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/537915.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Maven的基本使用

Maven的基本使用 一、为什么要使用Maven1.1 方便添加第三方Jar包1.2 方便获取第三方Jar包(中央仓库)1.3 解决了依赖问题1.4 解决了依赖冲突1.4 项目管理更清晰1.5 总结 二、Maven的下载三、配置Maven本地仓库和中央仓库3.1 Settings文件3.2 配置本地仓库3.3 配置中央仓库(镜像地…

已经连接过的网络的密码忘记了,怎么快速找回?

使用笔记本电脑曾经连接过一些无线路由器,时间久了,密码可能就忘记了。再使用其他设备连接时,就需要尝试去找到这个密码。本片文章就是通过几个命令快速找到之前使用笔记本电脑曾经连接过的无线网络的密码。 第一步、查看曾经连接过哪些无线网…

2024年将人力RPO项目当蓝海项目吗?

随着科技的快速发展和全球化趋势的加强,人力资源外包(RPO)项目在过去的几年中异军突起,成为企业优化人力资源配置、降低运营成本的重要手段。然而,到了2024年,我们是否还能将人力RPO项目视为一片尚待开发的蓝海呢? 从市场角度来看…

膝关节痛做什么锻炼好得快?这些运动对膝关节很“友好”!

膝关节不是身体中最常受伤的部位,却是最薄弱、要求最高的关节,原因是膝关节承受人的整个重量,而且由于活动范围大,极容易造成膝关节疼痛。 膝关节疼痛多发生于青年人,如田径、登山运动员,舞蹈演员等。发病率…

蓝桥杯算法错题记录-基础篇

文章目录 本文还在跟新,最新跟新时间3/11!!! 格式一定要符合要求,(输入,输出格式)1. nextInt () next() nextLine() 的注意事项2 .数的幂 a^2等3.得到最大长度(最大...&a…

Gitee的注册和代码提交(附有下载链接)

目录 一、Git的下载和安装二、安装图形化界面工具三、在Gitee上创建仓库四、如何把仓库开源五、Clone远程仓库到本地六、拷贝代码到本地的仓库七、Add-Commit-Push到远程仓库八、可能出现的问题8.1 建议在本地仓库直接创建项目8.2 第一次Push可能出现的问题8.3 怎么删除Gitee上…

挑战杯 机器学习股票大数据量化分析与预测系统 - python 挑战杯

文章目录 0 前言1 课题背景2 实现效果UI界面设计web预测界面RSRS选股界面 3 软件架构4 工具介绍Flask框架MySQL数据库LSTM 5 最后 0 前言 🔥 优质竞赛项目系列,今天要分享的是 🚩 机器学习股票大数据量化分析与预测系统 该项目较为新颖&am…

悲观锁和乐观锁

如果将悲观锁(Pessimistic Lock)和乐观锁(PessimisticLock 或 OptimisticLock)对应到现实生活中来。悲观锁有点像是一位比较悲观(也可以说是未雨绸缪)的人,总是会假设最坏的情况,避免…

【JS】浅谈浅拷贝与深拷贝

浅拷贝与深拷贝 前言一、浅拷贝?1.1是什么?1.2做什么?1.3为什么使用?1.4实现方式?1.5 应用场景? 二、深拷贝?2.1是什么?2.2做什么?2.3为什么使用?2.4实现方式…

闪回技术

目录 闪回技术 恢复mybonus表 彻底删除mybonus表 清空回收站 Oracle从入门到总裁:​​​​​​https://blog.csdn.net/weixin_67859959/article/details/135209645 闪回技术 Flash Back 给予用户最为直接的支持之一就是给了用户后悔的机会 但是现在如果用户想去操作这个…

基于Java+SpringBoot+vue+element实现物流管理系统

基于JavaSpringBootvueelement实现物流管理系统 博主介绍:多年java开发经验,专注Java开发、定制、远程、文档编写指导等,csdn特邀作者、专注于Java技术领域 ** 作者主页 央顺技术团队** 欢迎点赞 收藏 ⭐留言 文末获取源码联系方式 文章目录 基于JavaSpr…

Git 遇到合并冲突如何解决

Git 遇到合并冲突解决方法 前言一、解决冲突 回滚二、将解冲突后的文件 提交到暂存区三、git commit 提交代码到本地Git仓库四、git push 提交五、注意 ​ 2024/3/13 前言 Git突然无法拉取下来,显示有合并冲突: 步骤:解决回滚解决冲突后、添…