9种分布式ID生成之美团(Leaf)实战

​​​​​

前几天写过一篇《一口气说出 9种 分布式ID生成方式,面试官有点懵了》,里边简单的介绍了九种分布式ID生成方式,但是对于像美团(Leaf)滴滴(Tinyid)百度(uid-generator)都是一笔带过。而通过读者留言发现,大家普遍对他们哥三更感兴趣,所以后边会结合实战,详细的对三种分布式ID生成器学习,今天先啃下美团(Leaf)

不了解分布式ID的同学,先行去看《一口气说出 9种 分布式ID生成方式,面试官有点懵了》温习一下基础知识,这里就不再赘述了

美团(Leaf)

Leaf是美团推出的一个分布式ID生成服务,名字取自德国哲学家、数学家莱布尼茨的一句话:“There are no two identical leaves in the world.”(“世界上没有两片相同的树叶”),取个名字都这么有寓意,美团程序员牛掰啊!

Leaf的优势:高可靠低延迟全局唯一等特点。

目前主流的分布式ID生成方式,大致都是基于数据库号段模式雪花算法(snowflake),而美团(Leaf)刚好同时兼具了这两种方式,可以根据不同业务场景灵活切换。

接下来结合实战,详细的介绍一下LeafLeaf-segment号段模式Leaf-snowflake模式

一、 Leaf-segment号段模式

Leaf-segment号段模式是对直接用数据库自增ID充当分布式ID的一种优化,减少对数据库的频率操作。相当于从数据库批量的获取自增ID,每次从数据库取出一个号段范围,例如 (1,1000] 代表1000个ID,业务服务将号段在本地生成1~1000的自增ID并加载到内存.。

大致的流程入下图所示:
在这里插入图片描述
号段耗尽之后再去数据库获取新的号段,可以大大的减轻数据库的压力。对max_id字段做一次update操作,update max_id= max_id + step,update成功则说明新号段获取成功,新的号段范围是(max_id ,max_id +step]。

由于依赖数据库,我们先设计一下表结构:

CREATE TABLE `leaf_alloc` (`biz_tag` varchar(128) NOT NULL DEFAULT '' COMMENT '业务key',`max_id` bigint(20) NOT NULL DEFAULT '1' COMMENT '当前已经分配了的最大id',`step` int(11) NOT NULL COMMENT '初始步长,也是动态调整的最小步长',`description` varchar(256) DEFAULT NULL COMMENT '业务key的描述',`update_time` timestamp NOT NULL DEFAULT CURRENT_TIMESTAMP ON UPDATE CURRENT_TIMESTAMP COMMENT '数据库维护的更新时间',PRIMARY KEY (`biz_tag`)
) ENGINE=InnoDB DEFAULT CHARSET=utf8;

预先插入一条测试的业务数据

INSERT INTO `leaf_alloc` (`biz_tag`, `max_id`, `step`, `description`, `update_time`) VALUES ('leaf-segment-test', '0', '10', '测试', '2020-02-28 10:41:03');
  • 1
  • biz_tag:针对不同业务需求,用biz_tag字段来隔离,如果以后需要扩容时,只需对biz_tag分库分表即可

  • max_id:当前业务号段的最大值,用于计算下一个号段

  • step:步长,也就是每次获取ID的数量

  • description:对于业务的描述,没啥好说的

将Leaf项目下载到本地:https://github.com/Meituan-Dianping/Leaf

修改一下项目中的leaf.properties文件,添加数据库配置

leaf.name=com.sankuai.leaf.opensource.test
leaf.segment.enable=true
leaf.jdbc.url=jdbc:mysql://127.0.0.1:3306/xin-master?useUnicode=true&characterEncoding=utf8
leaf.jdbc.username=junkang
leaf.jdbc.password=junkangleaf.snowflake.enable=false

注意leaf.snowflake.enable 与 leaf.segment.enable 是无法同时开启的,否则项目将无法启动。

配置相当的简单,直接启动LeafServerApplication后就OK了,接下来测试一下,leaf是基于Http请求的发号服务, LeafController 中只有两个方法,一个号段接口,一个snowflake接口,key就是数据库中预先插入的业务biz_tag


@RestController
public class LeafController {private Logger logger = LoggerFactory.getLogger(LeafController.class);@Autowiredprivate SegmentService segmentService;@Autowiredprivate SnowflakeService snowflakeService;/*** 号段模式* @param key* @return*/@RequestMapping(value = "/api/segment/get/{key}")public String getSegmentId(@PathVariable("key") String key) {return get(key, segmentService.getId(key));}/*** 雪花算法模式* @param key* @return*/@RequestMapping(value = "/api/snowflake/get/{key}")public String getSnowflakeId(@PathVariable("key") String key) {return get(key, snowflakeService.getId(key));}private String get(@PathVariable("key") String key, Result id) {Result result;if (key == null || key.isEmpty()) {throw new NoKeyException();}result = id;if (result.getStatus().equals(Status.EXCEPTION)) {throw new LeafServerException(result.toString());}return String.valueOf(result.getId());}
}

访问:http://127.0.0.1:8080/api/segment/get/leaf-segment-test,结果正常返回,感觉没毛病,但当查了一下数据库表中数据时发现了一个问题。
在这里插入图片描述
在这里插入图片描述
通常在用号段模式的时候,取号段的时机是在前一个号段消耗完的时候进行的,可刚刚才取了一个ID,数据库中却已经更新了max_id,也就是说leaf已经多获取了一个号段,这是什么鬼操作?
在这里插入图片描述

Leaf为啥要这么设计呢?

Leaf 希望能在DB中取号段的过程中做到无阻塞!

当号段耗尽时再去DB中取下一个号段,如果此时网络发生抖动,或者DB发生慢查询,业务系统拿不到号段,就会导致整个系统的响应时间变慢,对流量巨大的业务,这是不可容忍的。

所以Leaf在当前号段消费到某个点时,就异步的把下一个号段加载到内存中。而不需要等到号段用尽的时候才去更新号段。这样做很大程度上的降低了系统的风险。

那么某个点到底是什么时候呢?

这里做了一个实验,号段设置长度为step=10max_id=1
在这里插入图片描述
当我拿第一个ID时,看到号段增加了,1/10
在这里插入图片描述
在这里插入图片描述
当我拿第三个Id时,看到号段又增加了,3/10
在这里插入图片描述
在这里插入图片描述
Leaf采用双buffer的方式,它的服务内部有两个号段缓存区segment。当前号段已消耗10%时,还没能拿到下一个号段,则会另启一个更新线程去更新下一个号段。

简而言之就是Leaf保证了总是会多缓存两个号段,即便哪一时刻数据库挂了,也会保证发号服务可以正常工作一段时间。

在这里插入图片描述
通常推荐号段(segment)长度设置为服务高峰期发号QPS的600倍(10分钟),这样即使DB宕机,Leaf仍能持续发号10-20分钟不受影响。

优点:

  • Leaf服务可以很方便的线性扩展,性能完全能够支撑大多数业务场景。
  • 容灾性高:Leaf服务内部有号段缓存,即使DB宕机,短时间内Leaf仍能正常对外提供服务。

缺点:

  • ID号码不够随机,能够泄露发号数量的信息,不太安全。
  • DB宕机会造成整个系统不可用(用到数据库的都有可能)。
二、Leaf-snowflake

Leaf-snowflake基本上就是沿用了snowflake的设计,ID组成结构:正数位(占1比特)+ 时间戳(占41比特)+ 机器ID(占5比特)+ 机房ID(占5比特)+ 自增值(占12比特),总共64比特组成的一个Long类型。

Leaf-snowflake不同于原始snowflake算法地方,主要是在workId的生成上,Leaf-snowflake依靠Zookeeper生成workId,也就是上边的机器ID(占5比特)+ 机房ID(占5比特)。Leaf中workId是基于ZooKeeper的顺序Id来生成的,每个应用在使用Leaf-snowflake时,启动时都会都在Zookeeper中生成一个顺序Id,相当于一台机器对应一个顺序节点,也就是一个workId。

在这里插入图片描述
Leaf-snowflake启动服务的过程大致如下:

  • 启动Leaf-snowflake服务,连接Zookeeper,在leaf_forever父节点下检查自己是否已经注册过(是否有该顺序子节点)。
  • 如果有注册过直接取回自己的workerID(zk顺序节点生成的int类型ID号),启动服务。
  • 如果没有注册过,就在该父节点下面创建一个持久顺序节点,创建成功后取回顺序号当做自己的workerID号,启动服务。

Leaf-snowflake对Zookeeper是一种弱依赖关系,除了每次会去ZK拿数据以外,也会在本机文件系统上缓存一个workerID文件。一旦ZooKeeper出现问题,恰好机器出现故障需重启时,依然能够保证服务正常启动。

启动Leaf-snowflake模式也比较简单,起动本地ZooKeeper,修改一下项目中的leaf.properties文件,关闭leaf.segment模式,启用leaf.snowflake模式即可。

leaf.segment.enable=false
#leaf.jdbc.url=jdbc:mysql://127.0.0.1:3306/xin-master?useUnicode=true&characterEncoding=utf8
#leaf.jdbc.username=junkang
#leaf.jdbc.password=junkangleaf.snowflake.enable=true
leaf.snowflake.zk.address=127.0.0.1
leaf.snowflake.port=2181
    /*** 雪花算法模式* @param key* @return*/@RequestMapping(value = "/api/snowflake/get/{key}")public String getSnowflakeId(@PathVariable("key") String key) {return get(key, snowflakeService.getId(key));}

测试一下,访问:http://127.0.0.1:8080/api/snowflake/get/leaf-segment-test
在这里插入图片描述
优点:

  • ID号码是趋势递增的8byte的64位数字,满足上述数据库存储的主键要求。

缺点:

  • 依赖ZooKeeper,存在服务不可用风险(实在不知道有啥缺点了)
三、Leaf监控

请求地址:http://127.0.0.1:8080/cache

针对服务自身的监控,Leaf提供了Web层的内存数据映射界面,可以实时看到所有号段的下发状态。比如每个号段双buffer的使用情况,当前ID下发到了哪个位置等信息都可以在Web界面上查看。

在这里插入图片描述

总结

对于Leaf具体使用哪种模式,还是根据具体的业务场景使用,本文并没有对Leaf源码做过多的分析,因为Leaf 代码量简洁很好阅读。后续还会把其他几种分布式ID生成器,依次结合实战介绍给大家,欢迎大家关注。


今天就说这么多,如果本文对您有一点帮助,希望能得到您一个点赞👍哦

您的认可才是我写作的动力!

 

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/539030.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

一款针对加解密综合利用后渗透工具-DecryptTools

0x01前言 为什么会写这一款综合加解密工具,因为在很多比赛如果算拿下靶标不仅需要获取服务器权限还需要登录网站后台这时候很多系统要么数据库连接字符串加密,要么登陆用户加密而这款工具就是为了解决问题。加解密功能:该工具不仅有解密还提…

【计算机图形学】End-to-End Affordance Learning for Robotic Manipulation

对RLAfford:End-to-End Affordance Learning for Robotic Manipulation的简单理解 1. 为什么要做这件事 在交互环境中学习如何操纵3D物体是RL中的挑战性问题。很难去训练出一个能够泛化到具有不同语义类别、不同几何形状和不同功能物体上的策略。 Visual Afforda…

JavaEE企业开发新技术2

目录 2.7 Field类的基本概念 文字性概念描述: Field类 2.8 Field的基本操作-1 2.9 Field的基本操作-2 分析: 2.10 Field 的综合练习 总结: 和equals的区别: 使用 比较 使用equals比较 2.7 Field类的基本概念 文字性…

【当前全网最详细】WebUI中使用Instant_ID来控制生成对象面部的用法

🎈为什么有这篇文章 中文网络上或者B站很多UP,在讲述WebUI中使用这个controlnet来换脸的时候,要么讲的过于复杂,要么就是没有讲清楚,所以这里整理下详细的使用方法,并记录下生成的内容。 如果懒得看文字可…

Pretrain-finetune、Prompting、Instruct-tuning训练方法的区别

来自:【多模态】28、LLaVA 第一版 | Visual Instruction Tuning 多模态模型的指令微调_多模态指令跟随数据-CSDN博客 几种模型训练方法的区别: 1、Pretrain-finetune:先在大量数据集上做预训练,然后针对某个子任务做 finetune 2…

解析找不到msvcr120.dll无法继续执行此代码的多种修复方法

在计算机使用过程中,我们经常会遇到一些错误提示,其中之一就是“msvcr120.dll丢失”。这个错误通常会导致某些程序无法正常运行。为了解决这个问题,本文将介绍5种修复msvcr120.dll丢失的方法。 一,msvcr120.dll丢失会出现哪些问题…

基于springboot+vue实现乌鲁木齐南山冰雪旅游服务网管理系统项目【项目源码+论文说明】

基于springbootvue实现南山冰雪旅游服务网演示 摘要 随着2022年北京冬奥会的成功举办,在冬天进行冰雪运动已经逐渐流行起来,人们慢慢享受到了冰雪活动给大家带来的欢乐,除此之外人们的身体素质也可以得到提升。虽然已经有一部分人可以接受并…

鸿蒙Harmony应用开发—ArkTS声明式开发(容器组件:GridCol)

栅格子组件,必须作为栅格容器组件(GridRow)的子组件使用。 说明: 该组件从API Version 9开始支持。后续版本如有新增内容,则采用上角标单独标记该内容的起始版本。 子组件 可以包含单个子组件。 接口 GridCol(option?:{span?: number | …

NVIDIA vGPU三种授权方式(个人玩家版)

NVIDIA vGPU三种授权方式(个人玩家版) 旧版本的License Server搭建(比较推荐)说明搭建所需文件创建一个Linux虚拟机(我创建的是Ubuntu 18.04.06)修改虚拟机的MAC地址关闭虚拟机的时间同步及修改系统时间安装java安装Apache Tomcat安装许可证服务器软件上传授权文件新版本…

通过NFS 实现windows共享linux目录

一、配置WIndows 1.进入程序和功能 2.勾选NFS服务,安装客户端 二、安装NFS Service 在ubuntu 1.查看apt源是否存在nfs服务端安装包 sudo apt-cache madison nfs-kernel-server 2. 安装nfs-kernel-server sudo apt install nfs-kernel-server 3.建立共享目录&…

Selenium 自动化 —— 入门和 Hello World 实例

Selenium 是什么 Selenium 是一个用于自动化网页浏览器操作的工具,它支持多种浏览器和多种操作系统。主要用于测试 web 应用程序的功能,也可用于执行一些基本的浏览器操作任务,例如自动化表单填写、网页导航等。 Selenium 是一个开源项目&a…

string接口[小白理解篇]

作文目的 本文是为了加深对string底层函数的一点理解(请勿与底层源码混为一谈),下面从模拟与注意项出发。 一.string 功能化模拟 1.迭代器模拟 迭代器,为实现简单便理解故使用指针的方式(非说明迭代器使用该方法实现)。其中的begin、end都是为了给迭代…