【图论】计算图的n-hop邻居个数,并绘制频率分布直方图

计算图的n-hop邻居个数,并绘制频率分布直方图

在图论中,n-hop邻居(或称为K-hop邻居)是指从某个顶点出发,通过最短路径(即最少的边数)可以到达的所有顶点的集合,其中n(或K)是这个最短路径的长度。换句话说,n-hop邻居就是在图中,从一个顶点出发,经过n步可以到达的所有顶点。

举个日常生活中的例子,我们的朋友是我们的1-hop邻居,我们的朋友的朋友是我们的2-hop邻居,以此类推。如果我们想找到所有与我们最多只有三层朋友关系的人(包括我们的朋友、我们的朋友的朋友、以及我们的朋友的朋友的朋友),那么这些人就是我们的3-hop邻居。

在下图中对于中间的红色节点,玫红色的就是1-hop邻居,橙色2,粉色3。

Gaudelet, T. et al. Utilizing graph machine learning within drug discovery and development. doi:10.1093/bib/bbab159.

如何在networkx中计算n-hop邻居的数量?

由定义我们可以知道,只要找到某个节点通过最短路径为n的边就可以找到它的n-hop邻居了,那么我们就可以用nx.single_source_shortest_path_length

代码如下:

import networkx as nx
def n_hop_neighbors(G, n_hop):"""Calculate n-hop neighbors for each node in the graph."""n_hop_counts = {}for node in G.nodes():# n_hop_counts[node] = len(list(nx.single_source_shortest_path_length(G, node, cutoff=n_hop))) - 1n_hop_counts[node] = len(list(nx.single_source_shortest_path_length(G, node, cutoff=n_hop).keys())) - 1n_hop_array = list(n_hop_counts.values())return n_hop_array

绘制分布直方图

我们使用seaborn的sns.histplot来进行绘制,代码如下:

import networkx as nx
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
# Assuming G is your NetworkX graph
# Example graph
# G = nx.Graph()
# G.add_edges_from([('v1', 'v2'), ('v2', 'v4'), ('v1', 'v3')])
plt.figure(figsize=(6, 3))# Calculate n-hop neighbors for n=1
# n_hop_counts = n_hop_neighbors(G, 3)
# Step 1: Store n-hop counts in a dictionary
n_hop_counts_dict = {}
for i in range(1, 5): # Hop counts 1 through 4n_hop_counts_dict[f'{i}-hop'] = n_hop_neighbors(G, i)# Step 2: Convert the dictionary to a DataFrame
n_hop_counts_df = pd.DataFrame(n_hop_counts_dict)# Reshape the DataFrame to long format
n_hop_counts_long = n_hop_counts_df.melt(var_name='n-hop', value_name='Number of cells in n-hop neighbourhood')
# Plotting the histogram
sns.histplot(data=n_hop_counts_long, x="Number of cells in n-hop neighbourhood", hue="n-hop", kde=False, log_scale=False, stat="probability")
plt.xlim(0, 110)
plt.grid(False)
plt.show()

结果如下:

image-20240314161010809

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/539204.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Jmeter扩展开发--自定义java取样器

简介 jmeter内置了包括:http、https、tcp等各种协议的支持,通常情况只需要做简单的参数配置即可使用。但在某些特殊情况下,还是希望能做自定义压测处理,此时就涉及Jmeter的扩展开发自定义Java取样器,如下图所示&#…

给电脑加硬件的办法 先找电脑支持的接口,再买相同接口的

需求:我硬盘太小,换或加一个大硬盘 结论:接口是NVMe PCIe 3.0 x4 1.找到硬盘型号 主硬盘 三星 MZALQ512HALU-000L2 (512 GB / 固态硬盘) 2.上官网查 或用bing查 非官方渠道信息,不确定。

linux安全--Nginx与Tomcat实现负载均衡

目录 1.实验拓扑原理图,前提实现全网互通 2.找到nginx的conf目录中的nginx.conf文件 3.实验效果 1.实验拓扑原理图,前提实现全网互通 搭建全网互通可以看https://blog.csdn.net/m0_74313947/article/details/136008513?spm1001.2014.3001.5501 搭建N…

微信小程序 uniapp奶茶点单系统r4112

系统功能有:信点单小程序分为小程序部分和后台管理两部分,小程序部分的主要功能包含:用户注册登录,查看商品信息,加入购物车,结算并生成订单,订单管理,资讯管理,个人中心…

创新营销的新篇章:企业如何通过VR虚拟发布会提升品牌影响力

在数字化转型的浪潮中,VR虚拟发布会作为一种新兴的营销手段,正逐渐成为企业品牌推广和产品发布的重要选择。通过利用虚拟现实技术,企业能够在虚拟空间中举办发布会,为参与者提供沉浸式的体验。 一、创新体验:虚拟空间的…

文字弹性跳动CSS3代码

文字弹性跳动CSS3代码,源码由HTMLCSSJS组成,记事本打开源码文件可以进行内容文字之类的修改,双击html文件可以本地运行效果,也可以上传到服务器里面,重定向这个界面 下载地址 文字弹性跳动CSS3代码

CrossEntropyLoss 和NLLLoss的关系

交叉熵损失在做一件什么事? 看公式: x是预测(不需要softmax归一化),y是label, N是batch维度的数量,交叉熵损失,干了三件事. 1. 对输入在类别维度求softmax 2. 多softmax后的数,求log 3. 对(样本数, 类别数)为shape的tensor计算NLLLoss. 其中,NLLloss做的就是log取负, 和o…

java并发编程之 volatile关键字

1、简单介绍一下JMM Java 内存模型(Java Memory Model 简称JMM)是一种抽象的概念,并不真实存在,指一组规则或规范,通过这组规范定义了程序中各个变量的访问方式。java内存模型(JMM)屏蔽掉各种硬件和操作系统的内存访问…

如何正确地设置Outlook SMTP发送电子邮件?

Outlook SMTP发送邮件配置方法?Outlook怎么开启SMTP? 在使用Outlook发送邮件时,正确设置SMTP服务器是确保邮件能够顺利发送的关键步骤。接下来,就让AokSend一起探讨如何正确地设置Outlook SMTP发送电子邮件吧! Outlo…

java kafka客户端何时设置的kafka消费者默认值

kafka为什么有些属性没有配置却能正常工作,那是因为kafka-clients对有些消费者设置了默认值,具体看下ConsumerConfig类的静态模块,具体如下所示: kafka为什么有些属性没有配置却能正常工作,那是因为kafka-clients对有…

【Leetcode每日一刷】顺/逆时针旋转矩阵 |48. 旋转图像、矩阵的螺旋遍历 |54. 螺旋矩阵

一、48. 旋转图像 1.1:题目 48. 旋转图像 1.2:解题思路 题型:顺/逆时针旋转矩阵; ❗❗核心思想/ 关键:不可暴力模拟,先镜像,后水平翻转 这题的意思很简单,就是让我们把矩阵顺时…

[云原生] Prometheus自动服务发现部署

一、部署服务发现 1.1 基于文件的服务发现 基于文件的服务发现是仅仅略优于静态配置的服务发现方式,它不依赖于任何平台或第三方服务,因而也是最为简单和通用的实现方式。 Prometheus Server 会定期从文件中加载 Target 信息,文件可使用 YAM…