Flink通讯模型—Akka与Actor模型

Carl Hewitt 在1973年对Actor模型进行了如下定义:"Actor模型是一个把'Actor'作为并发计算的通用原语". Actor是异步驱动,可以并行和分布式部署及运行的最小颗粒。也就是说,它可以被分配,分布,调度到不同的CPU,不同的节点,乃至不同的时间片上运行,而不影响最终的结果。因此Actor在空间(分布式)和时间(异步驱动)上解耦的。而Akka是Lightbend(前身是Typesafe)公司在JVM上的Actor模型的实现。我们在了解actor模型之前,首先来了解actor模型主要是为了解决什么样的问题。

在akka系统的官网上主要介绍了现代并发编程模型所遇到的问题,里面主要提到了三个点 ​

1) 在面向对象的语言中一个显著的特点是封装,然后通过对象提供的一些方法来操作其状态,但是共享内存的模型下,多线程对共享对象的并发访问会造成并发安全问题。一般会采用加锁的方式去解决

加锁会带来一些问题

  • 加锁的开销很大,线程上下文切换的开销大
  • 加锁导致线程block,无法去执行其他的工作,被block无法执行的线程,其实也是占据了一种系统资源
  • 加锁在编程语言层面无法防止隐藏的死锁问题

2)Java中并发模型是通过共享内存来实现,cpu中会利用cache来加速主存的访问,为了解决缓存不一致的问题,在java中一般会通过使用volatile或者Atmoic来标记变量,让jmm的happens before机制来保障多线程间共享变量的可见性。因此从某种意义上来说是没有共享内存的,而是通过cpu将cache line的数据刷新到主存的方式来实现可见。 因此与其去通过标记共享变量或者加锁的方式,依赖cpu缓存更新,倒不如每个并发实例之间只保存local的变量,而在不同的实例之间通过message来传递。 ​

3)call stack的问题 当我们编程模型异步化之后,还有一个比较大的问题是调用栈转移的问题,如下图中主线程提交了一个异步任务到队列中,Worker thread 从队列提取任务执行,调用栈就变成了workthread发起的,当任务出现异常时,处理和排查就变得困难。

那么akka 的actor的模型是怎样处理这些问题的,actor模型中的抽象主体变为了actor,

  • actor之间可以互相发送message。
  • actor在收到message之后会将其存入其绑定的Mailbox中。
  • Actor中Mailbox中提取消息,执行内部方法,修改内部状态。
  • 继续给其他actor发送message。

可以看到下图,actor内部的执行流程是顺序的,同一时刻只有一个message在进行处理,也就是actor的内部逻辑可以实现无锁化的编程。actor和线程数解耦,可以创建很多actor绑定一个线程池来进行处理,no lock,no block的方式能减少资源开销,并提升并发的性能 ​

通俗解释:

        在Actor模型中,actor是一个并发原语,简单的说,一个actor就是一个工人,与进程或线程一样都能够工作或处理任务。其实这还有点不好理解,我们可以把它想象成面向对象编程语言中的一个对象实例。在OOP中一个对象可以访问或修改另一个对象的属性,也可以直接调用另一个对象的方法。例如下图,person1给person2发送了一个消息,直接调用方法就行了。深入底层执行逻辑的话,结果就是JVM转到sayHello的代码区,一步步执行。

public class HelloWorld {private String name = "";public HelloWorld(String name){this.name = name;}public String getName(){return this.name;}public void sayHello(HelloWorld to, String msg){System.out.println(to.getName()+" 收到 "+name+" 的消息:"+ msg);}
}public class OOPInvoke {public static void main( String[] args ) {HelloWorld person1 = new HelloWorld("Person1");HelloWorld person2 = new HelloWorld("Person2");person1.sayHello(person2,"Hello world");}
}

        sayHello在一个线程中执行基本没有问题,但是多个线程执行时,就可能出问题了,因为在执行sayHello的时候person2的name值可能被其他线程修改。这是一个name字段,意外修改没有关系,但如果是一个金额字段呢?

  actor和对象的不同之处在于,actor的状态不能直接读取、修改,actor的方法不能直接调用。actor只能通过消息传递的方式与外界通信。

        每个对象都有一个this指针,代表对象的地址,可以通过该地址调用方法或存取状态;

        与此类似,actor也有一个代表本身的地址,但只能向该地址发送消息。

  简单点说,actor通过消息传递的方式与外界通信。消息传递是异步的。每个actor都有一个邮箱,该邮箱接收并缓存其他actor发过来的消息,actor一次只能同步处理一个消息,处理消息过程中,除了可以接收消息,不能做任何其他操作。这就是actor模型的本质。

 Actor模型的另一个好处就是可以消除共享状态,因为它每次只能处理一条消息,所以actor内部可以安全的处理状态,而不用考虑锁机制。

说白了如果是个普通对象,它内部是异步的,你获取到的名字,或者金额等属性可能在前面0.1s被异步修改过了,所以你是在错误的值上进行修改,然后得到一个可能错误的值。比如本来100,你想要加20,但它被异步修改成50,你还是100+20 = 120,实际上应该是50+20 = 70。但是actor内部就是同步的,你是先获取,再修改,或者先修改,在获取,是固定的,安全的。

Flink内部节点之间的通信是用Akka,比如JobManager和TaskManager之间的通信而operator之间的数据传输是利用Netty。

Flink通过Akka进行的分布式通信的实现,在0.9版中采用。使用Akka,所有远程过程调用现在都实现为异步消息。这主要影响组件JobManager,TaskManager 和JobClient。将来,甚至有可能将更多的组件转换为参与者,从而允许它们发送和处理异步消息。

RPC框架是Flink任务运行的基础,Flink整个RPC框架基于Akka实现,并对Akka中的ActorSystem、Actor进行了封装和使用,Flink整个通信框架的组件主要由RpcEndpoint、RpcService、RpcServer、AkkaInvocationHandler、AkkaRpcActor等构成。RpcEndpoint定义了一个Actor的路径;RpcService提供了启动RpcServer、执行代码体等方法;RpcServer/AkkaInvocationHandler提供了与Actor通信的接口;AkkaRpcActor为Flink封装的Actor。

一、Akka与Actor模型

Akka是一个开发并发、容错和可伸缩应用的框架。它是Actor Model的一个实现,和Erlang的并发模型很像。在Actor模型中,所有的实体被认为是独立的actors。actors和其他actors通过发送异步消息通信。Actor模型的强大来自于异步。它也可以显式等待响应,这使得可以执行同步操作。但是,强烈不建议同步消息,因为它们限制了系统的伸缩性。每个actor有一个邮箱(mailbox),它收到的消息存储在里面。另外,每一个actor维护自身单独的状态。一个Actors网络如下所示:

 

每个actor是一个单一的线程,它不断地从其邮箱中poll(拉取)消息,并且连续不断地处理。对于已经处理过的消息的结果,actor可以改变它自身的内部状态或者发送一个新消息或者孵化一个新的actor。

1、 Actor系统

一个Actor系统包含了所有存活的actors。它提供的共享服务包括调度、配置和日志等。Actor系统同时包含一个线程池,所有actor从这里获取线程。

多个Actor系统可以在一台机器上共存。如果一个Actor系统通过RemoteActorRefProvider启动,它就可以被其他机器上的Actor系统发现。Actor系统能够自动识别消息是发送给本地机器还是远程机器的Actor系统。在本地通信的情况下,消息通过共享存储器高效的传输。在远程通信的情况下,消息通过网络栈发送。

所有Actors都是继承来组织的。每个新创建的actor将其创建的actor视作父actor。继承被用来监督。每个父actor对自己的子actor负责监督。如果在一个子actor发生错误,父actor将会收到通知。如果这个父actor可以解决这个问题,它就重新启动这个子actor。如果这个错误父actor无法处理,它可以把这个错误传递给自己的父actor。

第一个actor通过系统创建,由/user 这个actor负责监督。详细的Actor的继承制度可以参考https://doc.akka.io//docs/akka/snapshot/general/supervision.html。

2、 Flink中的Actor

Actor是一个包含状态和行为的容器。actor线程顺序处理收到的消息。这样就让用户摆脱锁和线程管理的管理,因为一次只有一个线程对一个actor有效。但是,必须确保只有这个actor线程可以处理其内部状态。Actor的行为由receive函数定义,该函数包含收到的消息的处理逻辑。

Flink系统由3个分布式组件构成:JobClient,JobManager和TaskManager。JobClient从用户处得到Flink Job,并提交给JobManager。JobManager策划这个job的执行。首先,它分配所需的资源,主要就是TaskManagers上要执行的slot。

在资源分配之后,JobManager部署单独的任务到响应的TaskManager上。一旦收到一个任务,TaskManager产生一个线程用来执行这个任务。状态的改变,比如开始计算或者完成计算,将被发送回JobManager。基于这些状态的更新,JobManager将引导这个job的执行直到完成。一旦一个job被执行完,其结果将会被发送回JobClient。Job的执行图如下所示:

3、 异步VS同步消息

在任何地方,Flink尝试使用异步消息和通过futures来处理响应。Futures和很少的几个阻塞调用有一个超时时间,以防操作失败。这是为了防止死锁,当消息丢失或者分布式足觉crash。但是,如果在一个大集群或者慢网络的情况下,超时可能会使得情况更糟。因此,操作的超时时间可以通过“akka.timeout.timeout”来配置。

在两个actor可以通信之前,需要获取一个ActorRef。这个操作的查找同样需要一个超时。为了使得系统尽可能快速的失败,如果一个actor还没开始,超时时间需要被设置的比较小。为了以防经历查询超时,可以通过“akka.lookup.timeout”配置增加查询时间。

Akka的另一个特点是限制发送的最大消息大小。原因是它保留了同样数据大小的序列化buffer和不想浪费空间。如果你曾经遇到过传输失败,因为消息超过了最大大小,你可以增加“akka.framesize”配置来增加大小。

下面分别是JobManager和TaskManager的概念图:

其中Dispatcher、ResourceManager、JobMaster是JobManager进程中的Rpc服务,TaskExecutor是TaskManager进程中的Rpc服务,MetricQueryService在JobManager和TaskManager进程中都有。

RpcGateway

  1. 用于定义RPC协议,是客户端和服务端沟通的桥梁。
  2. 服务端实现了RPC协议,即实现了接口中定义的方法,做具体的业务逻辑处理
  3. 客户端实现了RPC协议,客户端是Proxy生成的代理对象,将对RpcGateway接口方法的调用转为Akka的消息发送。

        RpcEndpoint

  1. RPC服务端的抽象,实现了该接口即为Rpc服务端,是Akka中Actor的封装。
  2. Actor收到ActorRef发送的消息(消息被封装为RpcInvocation对象),会通过RpcInvocation对象中的方法、参数等信息以反射的方式调用RpcGateway接口对应的方法。

        RpcService

  1. 是 RpcEndpoint 的运行时环境,是Akka中ActorSystem的封装
  2. 一个ActorSystem系统中有多个Actor,同样在Flink中一个RpcService中有多个RpcEndpoint,即多个Rpc服务。
  3. Flink中RpcService也有多套,JobManager和TaskManager进程中都有两套RpcService。
  4. RpcService 提供了启动Rpc服务(startServer)、停止Rpc服务(stopServer)、连接远端Rpc服务等方法
  5. 实现类是AkkaRpcService,内有属性ActorSystem actorSystem,Map<ActorRef, RpcEndpoint> actors。

        RpcServer

        是Rpc服务端自身的代理对象,设计上是供服务端调用自身非Rpc方法。

二、使用Akka

Akka系统的核心ActorSystem和Actor,若需构建一个Akka系统,首先需要创建ActorSystem,创建完ActorSystem后,可通过其创建Actor(注意:Akka不允许直接new一个Actor,只能通过 Akka 提供的某些 API 才能创建或查找 Actor,一般会通过 ActorSystem#actorOf和ActorContext#actorOf来创建 Actor),另外,我们只能通过ActorRef(Actor的引用,其对原生的 Actor 实例做了良好的封装,外界不能随意修改其内部状态)来与Actor进行通信。如下代码展示了如何配置一个Akka系统。


// 1. 构建ActorSystem
// 使用缺省配置
ActorSystem system = ActorSystem.create("sys");
// 也可显示指定appsys配置
ActorSystem system1 = ActorSystem.create("helloakka",ConfigFactory.load("appsys"));
// 2. 构建Actor,获取该Actor的引用,即
ActorRefActorRef helloActor = system.actorOf(Props.create(HelloActor.class),"helloActor");
// 3. 给helloActor发送消息
helloActor.tell("hello helloActor", ActorRef.noSender());
// 4. 关闭
ActorSystemsystem.terminate();

1、 Actor路径

在Akka中,创建的每个Actor都有自己的路径,该路径遵循ActorSystem 的层级结构,大致如下:

1)本地路径

在上面代码中,本地Actor路径为 akka://sys/user/helloActor

含义如下:

  • sys,创建的ActorSystem的名字;

  • user,通过ActorSystem#actorOf和ActorContext#actorOf 方法创建的 Actor 都属于/user下,与/user对应的是/system, 其是系统层面创建的,与系统整体行为有关,在开发阶段并不需要对其过多关注

  • helloActor,我们创建的HelloActor

2)远程路径

在上面代码中,远程Actor路径为 akka.tcp://sys@l27.0.0.1:2020/user/remoteActor

含义如下:

  • akka.tcp,远程通信方式为tcp;

  • sys@127.0.0.1:2020,ActorSystem名字及远程主机ip和端口号。

  • user,与本地的含义一样

  • remoteActor,创建的远程Actor

2、 获取Actor

若提供了Actor的路径,可以通过路径获取到ActorRef,然后与之通信,代码如下所示:


ActorSystem system = ActorSystem.create("sys");
ActorSelection as= system.actorSelection("/path/to/actor");
Timeout timeout =new Timeout(Duration.create(2, "seconds"));
Future<ActorRef> fu = as.resolveOne(timeout);
fu.onSuccess(newOnSuccess<ActorRef>() { @Overridepublic void onSuccess(ActorRef actor) { System.out.println("actor:" +actor); actor.tell("hello actor",ActorRef.noSender()); }     
},system.dispatcher()); 
fu.onFailure(newOnFailure() { @Override public void onFailure(Throwable failure) { System.out.println("failure:" +failure); } },system.dispatcher()
);

若需要与远端Actor通信,路径中必须提供ip:port。

三、Actor通信

Akka有两种核心的异步通信方式:tell和ask。

1、 Tell方式

当使用tell方式时,表示仅仅使用异步方式给某个Actor发送消息,无需等待Actor的响应结果,并且也不会阻塞后续代码的运行,如:

helloActor.tell("hellohelloActor", ActorRef.noSender());

其中:第一个参数为消息,它可以是任何可序列化的数据或对象,第二个参数表示发送者,通常来讲是另外一个 Actor 的引用, ActorRef.noSender()表示无发送者((实际上是一个叫做deadLetters的Actor)。

2、 Ask方式

当我们需要从Actor获取响应结果时,可使用ask方法,ask方法会将返回结果包装在scala.concurrent.Future中,然后通过异步回调获取返回结果。如调用方:


// 异步发送消息给Actor,并获取响应结果
Future<Object> fu = Patterns.ask(printerActor, "hello helloActor", timeout);
fu.onComplete(newOnComplete<Object>() {@Overridepublic void onComplete(Throwable failure, String success) throws Throwable {if (failure != null) { System.out.println("failure is " + failure); }else { System.out.println("success is " + success); }}
},system.dispatcher());

HelloActor处理消息方法的代码大致如下:


private void handleMessage(Object object) {if (objectinstanceof String) {String str = (String)object; log.info("[HelloActor] message is {},sender is {}", str, getSender().path().toString());// 给发送者发送消息 getSender().tell(str, getSelf()); } 
}

上面主要介绍了Akka中的ActorSystem、Actor,及与Actor的通信;Flink借此构建了其底层通信系统。

参考:Flink源码分析之RPC通信-腾讯云开发者社区-腾讯云 (tencent.com)

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/539298.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

.Net使用ElasticSearch

文章目录 前言主体内容一.Kibana中ElasticSearch的基础操作1.GET&#xff08;查询&#xff09;1.POST&#xff08;新增&#xff09;1.PUT&#xff08;修改&#xff09;1.DELET&#xff08;删除&#xff09; 二.在.Net中&#xff0c;对ElasticSearch进行基础操作1.DotNet连接Ela…

大模型笔记:吴恩达 ChatGPT Prompt Engineering for Developers(1) prompt的基本原则和策略

1 intro 基础大模型 VS 用指令tune 过的大模型 基础大模型 只会对prompt的文本进行续写 所以当你向模型发问的时候&#xff0c;它往往会像复读机一样续写几个问题这是因为在它见过的语料库文本&#xff08;通常大多来自互联网&#xff09;中&#xff0c;通常会连续列举出N个问…

react/vue项目刷新页面404的原因以及解决办法

项目 公司官网 背景 1、问题描述&#xff1a;react/vue项目&#xff0c;正常的页面操作跳转&#xff0c;不会出现404的问题&#xff0c;但是一旦刷新&#xff0c;就会出现404报错 2、产生原因&#xff1a;我们打开react/vue打包后生成的dist文件夹&#xff0c;可以看到只有一…

基于MATLAB的直流无刷电机速度控制

作品简介 基于MATLAB的直流无刷电机速度控制 仿真平台&#xff1a;Matlab 仿真结果为&#xff1a;

npm报错,显示certificate has expired

从报错信息就可以知道是因为之前设置的淘宝镜像已过期&#xff0c;解决方法就是要把之前设置的淘宝镜像改成新的 第一种方法 第一步&#xff1a;清空缓存 npm cache clean --force第二步&#xff1a;重新设置新的镜像源 npm config set registry https://registry.npmmirror…

django-q轻量级定时任务制定

django-q ,celery&#xff0c;apschedule都可以作为python的选型&#xff0c;但是django-q更轻量级&#xff0c;可以定制想要的任务&#xff0c;通过消息中间件&#xff0c;来实现不太高并发的实现 官网介绍地址 django-q官网地址 本次测试的是python3.12版本 首先需要安装dja…

QT 如何防止 QTextEdit 自动滚动到最下方

在往QTextEdit里面append字符串时&#xff0c;如果超出其高度&#xff0c;默认会自动滚动到QTextEdit最下方。但是有些场景可能想从文本最开始的地方展示&#xff0c;那么就需要禁止自动滚动。 我们可以在append之后&#xff0c;添加如下代码&#xff1a; //设置编辑框的光标位…

华为配置WLAN外置Portal认证实验

华为配置WLAN外置Portal认证示例 组网图形 图1 配置WLAN外置Portal认证示例组网图 业务需求组网需求数据规划配置思路配置注意事项操作步骤 业务需求 某企业为了提高WLAN网络的安全性&#xff0c;采用外置Portal认证方式&#xff0c;实现对用户的接入控制。 组网需求 AC组…

论文阅读——Align before Fuse

Align before Fuse: Vision and Language Representation Learning with Momentum Distillation image-text contrastive learning(ITC)用在单模态&#xff0c;masked language modeling (MLM) and image-text matching (ITM) 用在多模态。 单模态编码器的表示上引入了中间图像…

如何在Windows 10上打开和关闭平板模式?这里提供详细步骤

前言 默认情况下&#xff0c;当你将可翻转PC重新配置为平板模式时&#xff0c;Windows 10会自动切换到平板模式。如果你希望手动打开或关闭平板模式&#xff0c;有几种方法可以实现。​ 自动平板模式在Windows 10上如何工作 如果你使用的是二合一可翻转笔记本电脑&#xff0…

常见的十大网络安全攻击类型

常见的十大网络安全攻击类型 网络攻击是一种针对我们日常使用的计算机或信息系统的行为&#xff0c;其目的是篡改、破坏我们的数据&#xff0c;甚至直接窃取&#xff0c;或者利用我们的网络进行不法行为。你可能已经注意到&#xff0c;随着我们生活中越来越多的业务进行数字化&…

嵌入式学习day37 数据结构

1.sqlite3_open int sqlite3_open( const char *filename, /* Database filename (UTF-8) */ sqlite3 **ppDb /* OUT: SQLite db handle */ ); 功能: 打开数据库文件(创建一个数据库连接) 参数: filename:数据库文…