C# danbooru Stable Diffusion 提示词反推 Onnx Demo

目录

说明

效果

模型信息

项目

代码

下载 


C# danbooru Stable Diffusion 提示词反推 Onnx Demo

说明

模型下载地址:https://huggingface.co/deepghs/ml-danbooru-onnx

效果

模型信息

Model Properties
-------------------------
---------------------------------------------------------------

Inputs
-------------------------
name:input
tensor:Float[-1, 3, -1, -1]
---------------------------------------------------------------

Outputs
-------------------------
name:output
tensor:Float[-1, 12547]
--------------------------------------------------------------- 

项目

代码

using Microsoft.ML.OnnxRuntime;
using Microsoft.ML.OnnxRuntime.Tensors;
using OpenCvSharp;
using System;
using System.Collections.Generic;
using System.Drawing;
using System.IO;
using System.Linq;
using System.Text;
using System.Windows.Forms;namespace Onnx_Demo
{public partial class Form1 : Form{public Form1(){InitializeComponent();}string fileFilter = "*.*|*.bmp;*.jpg;*.jpeg;*.tiff;*.tiff;*.png";string image_path = "";DateTime dt1 = DateTime.Now;DateTime dt2 = DateTime.Now;string model_path;Mat image;SessionOptions options;InferenceSession onnx_session;Tensor<float> input_tensor;List<NamedOnnxValue> input_container;IDisposableReadOnlyCollection<DisposableNamedOnnxValue> result_infer;DisposableNamedOnnxValue[] results_onnxvalue;Tensor<float> result_tensors;StringBuilder sb = new StringBuilder();public string[] class_names;private void button1_Click(object sender, EventArgs e){OpenFileDialog ofd = new OpenFileDialog();ofd.Filter = fileFilter;if (ofd.ShowDialog() != DialogResult.OK) return;pictureBox1.Image = null;image_path = ofd.FileName;pictureBox1.Image = new Bitmap(image_path);textBox1.Text = "";image = new Mat(image_path);}private void button2_Click(object sender, EventArgs e){if (image_path == ""){return;}button2.Enabled = false;textBox1.Text = "";sb.Clear();Application.DoEvents();image = new Mat(image_path);// 将图片转为RGB通道Cv2.CvtColor(image, image, ColorConversionCodes.BGR2RGB);// 输入Tensorinput_tensor = new DenseTensor<float>(new[] { 1, 3, image.Height, image.Width });// 输入Tensorfor (int y = 0; y < image.Height; y++){for (int x = 0; x < image.Width; x++){input_tensor[0, 0, y, x] = image.At<Vec3b>(y, x)[0] / 255f;input_tensor[0, 1, y, x] = image.At<Vec3b>(y, x)[1] / 255f;input_tensor[0, 2, y, x] = image.At<Vec3b>(y, x)[2] / 255f;}}//将 input_tensor 放入一个输入参数的容器,并指定名称input_container.Add(NamedOnnxValue.CreateFromTensor("input", input_tensor));dt1 = DateTime.Now;//运行 Inference 并获取结果result_infer = onnx_session.Run(input_container);dt2 = DateTime.Now;// 将输出结果转为DisposableNamedOnnxValue数组results_onnxvalue = result_infer.ToArray();// 读取第一个节点输出并转为Tensor数据result_tensors = results_onnxvalue[0].AsTensor<float>();var result_array = result_tensors.ToArray();double[] scores = new double[result_array.Length];for (int i = 0; i < result_array.Length; i++){double score = 1 / (1 + Math.Exp(result_array[i] * -1));scores[i] = score;}List<ScoreIndex> ltResult = new List<ScoreIndex>();ScoreIndex temp;for (int i = 0; i < scores.Length; i++){temp = new ScoreIndex(i, scores[i]);ltResult.Add(temp);}//根据分数倒序排序,取前10个var SortedByScore = ltResult.OrderByDescending(p => p.Score).ToList().Take(10);foreach (var item in SortedByScore){sb.Append(class_names[item.Index] + ",");}sb.Length--; // 将长度减1来移除最后一个字符sb.AppendLine("");sb.AppendLine("------------------");// 只取分数最高的// float max = result_array.Max();// int maxIndex = Array.IndexOf(result_array, max);// sb.AppendLine(class_names[maxIndex]+" "+ max.ToString("P2"));sb.AppendLine("推理耗时:" + (dt2 - dt1).TotalMilliseconds + "ms");textBox1.Text = sb.ToString();button2.Enabled = true;}private void Form1_Load(object sender, EventArgs e){model_path = "model/ml_danbooru.onnx";// 创建输出会话,用于输出模型读取信息options = new SessionOptions();options.LogSeverityLevel = OrtLoggingLevel.ORT_LOGGING_LEVEL_INFO;options.AppendExecutionProvider_CPU(0);// 设置为CPU上运行// 创建推理模型类,读取本地模型文件onnx_session = new InferenceSession(model_path, options);//model_path 为onnx模型文件的路径// 创建输入容器input_container = new List<NamedOnnxValue>();image_path = "test_img/2.jpg";pictureBox1.Image = new Bitmap(image_path);image = new Mat(image_path);List<string> str = new List<string>();StreamReader sr = new StreamReader("model/lable.txt");string line;while ((line = sr.ReadLine()) != null){str.Add(line);}class_names = str.ToArray();}}
}

下载 

源码下载

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/539690.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

OpenvSwitch VXLAN 隧道实验

OpenvSwitch VXLAN 隧道实验 最近在了解 openstack 网络&#xff0c;下面基于ubuntu虚拟机安装OpenvSwitch&#xff0c;测试vxlan的基本配置。 节点信息&#xff1a; 主机名IP地址OS网卡node1192.168.95.11Ubuntu 22.04ens33node2192.168.95.12Ubuntu 22.04ens33 网卡信息&…

2024/3/14打卡棋子(14届蓝桥杯)——差分

标准差分模板 差分——前缀和的逆运算&#xff08;一维二维&#xff09;-CSDN博客 题目 小蓝拥有 nn 大小的棋盘&#xff0c;一开始棋盘上全都是白子。 小蓝进行了 m 次操作&#xff0c;每次操作会将棋盘上某个范围内的所有棋子的颜色取反(也就是白色棋子变为黑色&#xff0…

【数据结构与算法】(13):交换排序之冒泡排序和快速排序

&#x1f921;博客主页&#xff1a;Code_文晓 &#x1f970;本文专栏&#xff1a;数据结构与算法 &#x1f63b;欢迎关注&#xff1a;感谢大家的点赞评论关注&#xff0c;祝您学有所成&#xff01; ✨✨&#x1f49c;&#x1f49b;想要学习更多数据结构与算法点击专栏链接查看&…

StarRocks——滴滴的极速多维分析实践

背景 滴滴集团作为生活服务领域的头部企业&#xff0c;其中橙心优选经过一年多的数据体系建设&#xff0c;逐渐将一部分需要实时交互查询&#xff0c;即席查询的多维数据分析需求由ClickHouse迁移到了StarRocks中&#xff0c;接下来以StarRocks实现的漏斗分析为例介绍StarRocks…

MapReduce解析:从定义到核心思想,编程规范与序列化解读

目录 一、 MapReduce1.1 MapReduce定义1.2 MapReduce优缺点1.2.1 优点1.2.2 缺点 1.3 MapReduce核心思想1.4 MapReduce进程1.5 常用数据序列化类型1.6 MapReduce编程规范1.6.1Mapper阶段1.6.2 Reduce阶段1.6.3 Driver阶段 1.7 WordCount案例实操1.7.1 本地测试1.7.2 提交到集群…

论文阅读——RingMo

RingMo: A Remote Sensing Foundation Model With Masked Image Modeling 与自然场景相比&#xff0c;RS图像存在以下困难。 1&#xff09;分辨率和方位范围大&#xff1a;受遥感传感器的影响&#xff0c;图像具有多种空间分辨率。此外&#xff0c;与自然图像的实例通常由于重…

接上一篇:分布式调用链追踪系统设计

所以必须得记录父子关系&#xff1a; A---->B 是 B---->C 的父调用 A---->D 是 D---->E 的父调用 A---->D 还是 D---->F 的父调用 如何记录呢&#xff1f;需要给每个调用分配一个ID (称为 SpanID)&#xff0c;并且把这个 ID 传递给子调用&#xff0c; 子…

2024.3.14jsp

一、实验目的 1、安装配置JSP运行环境 2、设置web服务目录&#xff0c;修改TomCAT服务器的端口号、访问web服务目录下的jsp页面。 二、实验项目内容&#xff08;实验题目&#xff09; 1、编写两个简单的JSP页面&#xff1b;参考第一章上机实验1、2 &#xff08;1&#xff09…

html--bug

文章目录 html html <!DOCTYPE html> <html><head><meta charset"UTF-8"><title>老师</title><style>body {background-color: #008000;margin: 0px;cursor: none;overflow: hidden;}</style></head><bod…

Jmeter+ant,ant安装与配置

1.ant含义 ant&#xff1a;Ant翻译过来是蚂蚁的意思&#xff0c;在我们做接口测试的时候&#xff0c;是可以用来做JMeter接口测试生成测试报告的工具 2.ant下载 下载地址&#xff1a;Apache Ant - Ant Manual Distributions download中选择ant 下载安装最新版zip文件 3.…

JVM及垃圾回收算法

一、JVM 1、jvm的内存组成 五大内存区域&#xff0c;分1.7和1.8 1.堆内存&#xff1a;引用类型的数据&#xff0c;内部组成&#xff1a;1.新生代&#xff08;伊甸区和幸存者区&#xff09;2.老年代。该区域经常发生垃圾回收的操作 堆是JVM中最大的一块内存区域&#xff0c;用…

installation of package ‘RDocumentation’ had non-zero exit status

installation of package ‘RDocumentation’ had non-zero exit status Warning in install.packages :installation of package ‘httr’ had non-zero exit status Warning in install.packages :installation of package ‘openssl’ had non-zero exit status 由于项目需…