运动想象 (MI) 迁移学习系列 (9) : 数据对齐(EA)

运动想象迁移学习系列:数据对齐(EA)

  • 0. 引言
  • 1. 迁移学习算法流程
  • 2. 欧式对齐算法流程
  • 3. 与RA算法进行对比
  • 4. 实验结果对比
  • 5. 总结
  • 欢迎来稿

论文地址:https://ieeexplore.ieee.org/abstract/document/8701679
论文题目:Transfer Learning for Brain–Computer Interfaces: A Euclidean Space Data Alignment Approach
论文代码:https://github.com/hehe03/EA/blob/master/main_MI.m

0. 引言

本篇博客重点考虑数据对齐部分,因为其对后续迁移学习的效果影响非常大。
数据对齐有多种方法,如黎曼对齐(Riemannian Alignment, RA)欧式对齐(Euclidean Alignment, EA)标签对齐(Label Alignment, LA)重心对齐(Centroid Alignment, CA) 等。下面重点介绍EA

1. 迁移学习算法流程

迁移学习算法流程如图11所示。可以看到数据对齐的位置所在!!!
在这里插入图片描述

2. 欧式对齐算法流程

欧式对齐算法流程如图12所示。其处理源域用户目标域用户的方式是一样的,所以下面描述中不区分源域用户和目标域用户。假定一个用户有n段EEG样本。EA先计算每段EEG样本的协方差矩阵,再计算这n个协方差矩阵的均值,记为 R ‾ \overline{R} R。对齐矩阵即为 R ‾ − 1 / 2 \overline{R}^{-1/2} R1/2。对每段EEG样本,左乘 R ‾ − 1 / 2 \overline{R}^{-1/2} R1/2,得到一个跟原始EEG样本维度相同的样本,用于取代进行所有后续计算,如空域滤波特征提取分类等。EA简单有效,主要原因是对齐之后任意用户的EEG样本协方差矩阵的均值都为单位矩阵,整体分布更加一致。这有点类似迁移学习中经常考虑的最大均值差异(Maximum Mean Discrepancy, MMD)度量。

在这里插入图片描述

3. 与RA算法进行对比

RA与EA对比如图13所示。EA计算更快无需任何标签信息,并且之后可以搭配任意欧式空间滤波器、特征提取、分类器等,使用更加灵活。实验证明,EA的效果提升也比RA更加明显。
在这里插入图片描述

4. 实验结果对比

我们在两个运动想象数据集(MI1、MI2)和一个事件相关电位数据集(ERP)上验证了EA的效果。MI2上的t-SNE可视化如图14所示。第一行中蓝色的点代表来自8个源域用户的数据分布,红色的点目标域用户(用户1)的数据分布。显然,EA对齐之前,源域和目标域数据分布差异很大。EA对齐之后,二者分布非常一致,有利于之后的迁移学习。第二行是用户2作为目标域时的结果,跟第一行结果类似。

在这里插入图片描述

5. 总结

到此,使用 数据对齐(EA) 已经介绍完毕了!!! 如果有什么疑问欢迎在评论区提出,对于共性问题可能会后续添加到文章介绍中。

如果觉得这篇文章对你有用,记得点赞、收藏并分享给你的小伙伴们哦😄。

欢迎来稿

欢迎投稿合作,投稿请遵循科学严谨、内容清晰明了的原则!!!! 有意者可以后台私信!!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/539985.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

【论文阅读】MoCoGAN: Decomposing Motion and Content for Video Generation

MoCoGAN: Decomposing Motion and Content for Video Generation 引用: Tulyakov S, Liu M Y, Yang X, et al. Mocogan: Decomposing motion and content for video generation[C]//Proceedings of the IEEE conference on computer vision and pattern recognitio…

vscode-server的搭建方法

一、配置服务器端口支持 1、开放端口: 2、关闭防火墙 systemctl stop firewalld.service systemctl disable firewalld.service二、配置code-server到服务器上** 1、下载code-server-4.22.0-linux-amd64.tar.gz到本地(可下载最新的版本)&a…

几何相互作用GNN预测3D-PLA

预测PLA是药物发现中的核心问题。最近的进展显示了将ML应用于PLA预测的巨大潜力。然而,它们大多忽略了复合物的3D结构和蛋白质与配体之间的物理相互作用,而这对于理解结合机制至关重要。作者提出了一种结合3D结构和物理相互作用的几何相互作用图神经网络GIGN,用于预测蛋白质…

CV论文--2024.3.15

1、FastMAC: Stochastic Spectral Sampling of Correspondence Graph 中文标题:FastMAC: 随机谱采样对应关系图 简介:在计算机视觉中,3D对应关系是指一对3D点,构成了基本概念。一组具有兼容边的3D对应关系形成了对应关系图&#…

openssh漏洞升级版本9.4.1p

服务器在做漏扫时发现openssh有几个高危漏洞,现在需要将openssh版本升级到9.4p1 查看openssh版本号 ssh -V 环境准备下载相关依赖和命令 yum install wget gcc openssl-devel pam-devel rpm-build zlib-devel -y 现有openssl1.0.2k升级openssl到1.1.1t 下载安装包 w…

COX回归影响因素分析的基本过程与方法

在科学研究中,经常遇到分类的结局,主要是二分类结局(阴性/阳性;生存/死亡),研究者可以通过logistic回归来探讨影响结局的因素,但很多时候logistic回归方法无法使用。如比较两种手段治疗新冠肺炎…

【Python数据结构与判断7/7】数据结构小结

目录 序言 整体回忆 定义方式 访问元素 访问单个元素 访问多个与元素 修改元素 添加元素 列表里添加元素 字典里添加元素 删除元素 in运算符 实战案例 总结 序言 今天将对前面学过的三种数据结构:元组(tuple)、列表(…

深度学习环境搭建

前言 因为一些原因,我需要更换一台新的服务器来跑深度学习。 这篇文章记录了我在新的远程服务器上搭建深度学习环境的过程。 基本情况 本人采用笔记本电脑连接远程服务器的方式跑深度学习代码。 笔记本电脑环境: 远程服务器环境: 环境搭…

使用 ChatGPT 写高考作文

写作文,很简单,但写一篇好的作文,是非常有难度的。 想要写一篇高分作文,需要对作文题目有正确的理解,需要展现独到的观点和深入的思考,需要具备清晰的逻辑结构,需要准确而得体的语言表达。 正…

macOS Ventura 13.6.5 (22G621) Boot ISO 原版可引导镜像下载

macOS Ventura 13.6.5 (22G621) Boot ISO 原版可引导镜像下载 3 月 8 日凌晨,macOS Sonoma 14.4 发布,同时带来了 macOS Ventru 13.6.5 和 macOS Monterey 12.7.4 安全更新。 macOS Ventura 13.6 及更新版本,如无特殊说明皆为安全更新&…

【数学】【计算几何】1453. 圆形靶内的最大飞镖数量

作者推荐 视频算法专题 本文涉及知识点 数学 计算几何 LeetCoce:1453. 圆形靶内的最大飞镖数量 Alice 向一面非常大的墙上掷出 n 支飞镖。给你一个数组 darts ,其中 darts[i] [xi, yi] 表示 Alice 掷出的第 i 支飞镖落在墙上的位置。 Bob 知道墙上所有 n 支飞…

普林斯顿算法讲义(二)

原文:普林斯顿大学算法课程 译者:飞龙 协议:CC BY-NC-SA 4.0 2.2 归并排序 原文:algs4.cs.princeton.edu/22mergesort 译者:飞龙 协议:CC BY-NC-SA 4.0 我们在本节中考虑的算法基于一种简单的操作&#xff…