说明:这是一个机器学习实战项目(附带数据+代码+文档+视频讲解),如需数据+代码+文档+视频讲解可以直接到文章最后获取。
1.项目背景
贝叶斯优化器 (BayesianOptimization) 是一种黑盒子优化器,用来寻找最优参数。
贝叶斯优化器是基于高斯过程的贝叶斯优化,算法的参数空间中有大量连续型参数,运行时间相对较短。
贝叶斯优化器目标函数的输入必须是具体的超参数,而不能是整个超参数空间,更不能是数据、算法等超参数以外的元素。
本项目使用基于贝叶斯优化器(Bayes_opt)优化极限学习机回归算法来解决回归问题。
2.数据获取
本次建模数据来源于网络(本项目撰写人整理而成),数据项统计如下:
编号 | 变量名称 | 描述 |
1 | x1 | |
2 | x2 | |
3 | x3 | |
4 | x4 | |
5 | x5 | |
6 | x6 | |
7 | x7 | |
8 | x8 | |
9 | x9 | |
10 | x10 | |
11 | y | 因变量 |
数据详情如下(部分展示):
3.数据预处理
3.1 用Pandas工具查看数据
使用Pandas工具的head()方法查看前五行数据:
关键代码:
3.2 数据缺失查看
使用Pandas工具的info()方法查看数据信息:
从上图可以看到,总共有11个变量,数据中无缺失值,共1000条数据。
关键代码:
3.3 数据描述性统计
通过Pandas工具的describe()方法来查看数据的平均值、标准差、最小值、分位数、最大值。
关键代码如下:
4.探索性数据分析
4.1 y变量直方图
用Matplotlib工具的hist()方法绘制直方图:
从上图可以看到,y变量主要集中在-400~400之间。
4.2 相关性分析
从上图中可以看到,数值越大相关性越强,正值是正相关、负值是负相关。
5.特征工程
5.1 建立特征数据和标签数据
关键代码如下:
5.2 数据集拆分
通过train_test_split()方法按照80%训练集、20%测试集进行划分,关键代码如下:
6.构建贝叶斯优化器优化极限学习机回归模型
主要使用基于贝叶斯优化器优化极限学习机回归算法,用于目标回归。
6.1 构建调优模型
编号 | 模型名称 | 调优参数 |
1 | 极限学习机回归模型 | n_hidden |
2 | alpha | |
3 | rbf_width |
6.2 最优参数展示
寻优的过程信息:
最优参数结果展示:
6.3 最优参数构建模型
编号 | 模型名称 | 调优参数 |
1 | 极限学习机回归模型 | n_hidden=int(params_best['n_hidden']) |
2 | alpha=params_best['alpha'] | |
3 | rbf_width=params_best['rbf_width'] |
7.模型评估
7.1 评估指标及结果
评估指标主要包括可解释方差值、平均绝对误差、均方误差、R方值等等。
模型名称 | 指标名称 | 指标值 |
测试集 | ||
极限学习机回归模型 | R方 | 0.9578 |
均方误差 | 1083.7915 | |
可解释方差值 | 0.9578 | |
平均绝对误差 | 24.3611 |
从上表可以看出,R方0.9578,为模型效果较好。
关键代码如下:
7.2 真实值与预测值对比图
从上图可以看出真实值和预测值波动基本一致,模型拟合效果良好。
8.结论与展望
综上所述,本文采用了贝叶斯优化器优化极限学习机回归模型算法寻找最优参数值来构建回归模型,最终证明了我们提出的模型效果良好。此模型可用于日常产品的预测。
# 本次机器学习项目实战所需的资料,项目资源如下:# 项目说明:# 获取方式一:# 项目实战合集导航:https://docs.qq.com/sheet/DTVd0Y2NNQUlWcmd6?tab=BB08J2# 获取方式二:链接:https://pan.baidu.com/s/1AnjPzEqq51dsqEe1REo5xQ
提取码:asxj