【Leetcode每日一题】 递归 - 反转链表(难度⭐)(35)

1. 题目解析

题目链接:206. 反转链表

这个问题的理解其实相当简单,只需看一下示例,基本就能明白其含义了。

2.算法原理

一、递归函数的核心任务

递归函数的主要职责是接受一个链表的头指针,并返回该链表逆序后的新头结点。递归的核心思想在于将问题分解为更小的子问题,并通过解决这些子问题来最终解决整个问题。

二、函数体的实现步骤

  1. 递归调用:首先,函数会递归地调用自身,以逆序当前结点之后的链表部分。这意味着函数会不断地深入链表的尾部,直到达到递归的出口条件。

  2. 处理当前结点:在递归返回后,我们已经得到了逆序后的链表部分。此时,我们需要将当前的结点添加到这个逆序链表的末尾。由于链表是单向的,我们需要小心地处理指针的指向,确保新添加的结点能够正确地链接到逆序链表上。

三、递归出口条件

递归函数需要有一个明确的出口条件,以避免无限递归。在这个问题中,出口条件就是当前结点为空(即链表已经遍历到末尾)或者当前链表只有一个结点。在这两种情况下,不需要进行逆序操作,函数直接返回当前结点即可。

四、注意事项

在处理链表相关的问题时,务必注意指针的操作。链表是通过指针来连接各个结点的,因此指针的指向必须正确无误。为了更好地理解指针的操作和链表的结构,建议在解决问题时画图辅助思考。通过图形化的方式,可以更直观地理解链表的逆序过程,以及指针在逆序过程中的变化。

小tips

这个递归算法的思路是通过不断地将问题分解为更小的子问题,并利用递归调用解决这些子问题,最终完成整个链表的逆序操作。在实现过程中,需要注意指针的正确操作,并确保递归有明确的出口条件。通过画图辅助思考,可以更好地理解链表的结构和指针的操作过程。

3.代码编写

1.递归写法
/*** Definition for singly-linked list.* struct ListNode {*     int val;*     ListNode *next;*     ListNode() : val(0), next(nullptr) {}*     ListNode(int x) : val(x), next(nullptr) {}*     ListNode(int x, ListNode *next) : val(x), next(next) {}* };*/
class Solution 
{
public:ListNode* reverseList(ListNode* head) {if(head == nullptr || head->next == nullptr) return head;ListNode *h = reverseList(head->next);head->next->next = head;head->next = nullptr;return h;}
};
2.迭代写法
/*** Definition for singly-linked list.* struct ListNode {*     int val;*     ListNode *next;*     ListNode() : val(0), next(nullptr) {}*     ListNode(int x) : val(x), next(nullptr) {}*     ListNode(int x, ListNode *next) : val(x), next(next) {}* };*/
class Solution 
{
public:ListNode* reverseList(ListNode* head) {if(head == nullptr) {return nullptr;}ListNode *pre = nullptr;ListNode *cur = head;ListNode *next = nullptr;while(cur->next != nullptr) {next = cur->next;cur->next = pre;pre = cur;cur = next;}cur->next = pre;return cur;}
};

The Last

嗯,就是这样啦,文章到这里就结束啦,真心感谢你花时间来读。

觉得有点收获的话,不妨给我点个吧!

如果发现文章有啥漏洞或错误的地方,欢迎私信我或者在评论里提醒一声~ 

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/541434.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

【研发日记】Matlab/Simulink技能解锁(五)——Simulink布线技巧

前言 见《【研发日记】Matlab/Simulink技能解锁(一)——在Simulink编辑窗口Debug》 见《【研发日记】Matlab/Simulink技能解锁(二)——在Function编辑窗口Debug》 见《【研发日记】Matlab/Simulink技能解锁(三)——在Stateflow编辑窗口Debug》 见《【研发日记】Matlab/Simulink…

可变形卷积v4 |更快更强,效果远超DCNv3

专栏介绍:YOLOv9改进系列 | 包含深度学习最新创新,助力高效涨点!!! 一、论文摘要 我们介绍了可变形卷积v4 (DCNv4),这是一种高效的算子,专为广泛的视觉应用而设计。DCNv4通过两个关键增强解决了…

【Canvas与艺术】时尚钟表

【实现效果图示】 【实现代码】 <!DOCTYPE html> <html lang"utf-8"> <meta http-equiv"Content-Type" content"text/html; charsetutf-8"/> <head><title>时尚钟表</title></head><body onload&…

如何使用ChatGPT快速写出一篇完美论文?

原文链接&#xff1a;如何使用ChatGPT快速写出一篇完美论文&#xff1f;https://mp.weixin.qq.com/s?__bizMzUzNTczMDMxMg&mid2247597847&idx2&sneaad4282191a165c08a78fbf5c6a47aa&chksmfa823ef0cdf5b7e619433e27b1249a3d57384dc052276bfb86c681e2069e0566ed…

Solo 开发者周刊 (第7期):Sora出世,或许又一行业将会消失?

这里会整合 Solo 社区每周推广内容、产品模块或活动投稿&#xff0c;每周五发布。在这期周刊中&#xff0c;我们将深入探讨开源软件产品的开发旅程&#xff0c;分享来自一线独立开发者的经验和见解。本杂志开源&#xff0c;欢迎投稿。 好文推荐 sora未来在哪里&#xff0c;是否…

《汇编语言》- 读书笔记 - 第17章-外传之 DOSBox-X 调用 int 13 读写磁盘

《汇编语言》- 读书笔记 - 第17章-外传之 DOSBox-X 调用 int 13 读写磁盘 总结dosbox-x.conf 不完美读取成功写入成功参考资料 总结 DOSBox 中访问 int 13h 始终没反应。网上查了下有人说是没支持&#xff0c;建议使用 DOSBox-X 经过无数遍尝试后&#xff1a; 环境状态Win11…

15届蓝桥杯第二期模拟赛题单详细解析

文章目录 &#x1f9e1;&#x1f9e1;t1_求余&#x1f9e1;&#x1f9e1;思路代码 &#x1f9e1;&#x1f9e1;t2_灌水&#x1f9e1;&#x1f9e1;思路代码 &#x1f9e1;&#x1f9e1;t3_字符显示&#x1f9e1;&#x1f9e1;思路代码 &#x1f9e1;&#x1f9e1;t4_区间最大和…

Liunx下安装Redis(详细安装)

1、创建一个文件目录 mkdir /opt/redis2、进入安装目录 cd /opt/redis3、下载redis默认安装包 默认是3.0版本的 wget http://download.redis.io/releases/redis4、进行解压 tar -xzvf redis-3.0.7.tar.gz5、进入解压好的文件夹目录 cd redis-3.0.7 6、将redis重新安装到 …

C语言:操作符详解(下)

目录 一、逗号表达式二、下标访问[ ]、函数调用()1. [ ]下标引用操作符2.函数调用操作符 三、结构成员访问操作符1.结构体(1) 结构的声明(2) 结构体变量的定义和初始化 2.结构成员访问操作符(1)结构体成员的直接访问(2)结构体成员的间接访问 四、操作符的属性&#xff1a;优先级…

数据集成平台选型建议

一 数据集成介绍 数据集成平台是一种用于管理和协调数据流动的软件工具或服务。它的主要目标是将来自多个不同数据源的数据整合到一个统一的、易于访问和分析的数据存储库中。这些数据源可以包括数据库、云应用、传感器、日志文件、社交媒体等等。数据集成平台的关键任务是确保…

matlab去除图片上的噪声

本问题来自CSDN-问答板块,题主提问。 如何利用matlab去除图片上的噪声? 一、运行效果图 左边是原图,右边是去掉噪音后的图片。 二、中文说明 中值滤波是一种常见的图像处理技术,用于去除图像中的噪声。其原理如下: 1. 滤波器移动:中值滤波器是一个小的窗口,在图像上移…

【计算机视觉】二、图像形成:2、几何基元和几何变换:2D变换

文章目录 一、向量和矩阵的基本运算二、几何基元和变换1、几何基元(Geometric Primitives)2、几何变换(Geometric Transformations)1. 各种变换的关系2. 变换公式3. 2D变换的层次4. python实现 一、向量和矩阵的基本运算 【计算机视觉】二、图像形成&#xff1a;1、向量和矩阵…