【C++】实现红黑树

目录

  • 一、认识红黑树
    • 1.1 概念
    • 1.2 定义
  • 二、实现红黑树
    • 2.1 插入
    • 2.2 与AVL树对比

一、认识红黑树

1.1 概念

红黑树是一个二叉搜索树,与AVL树相比,红黑树不再使用平衡因子来控制树的左右子树高度差,而是用颜色来控制平衡,颜色为红色或者黑色。控制任意一条从根到叶子节点的路径的节点颜色,就可以确保没有一条路径会比其他路径长出俩倍,因而是接近平衡的。

在这里插入图片描述

红黑树的规则:

  • 根节点是黑色的
  • 不能有连续的红色节点
  • 从某个节点出发,每条路径上的黑色节点的数量相同

1.2 定义

红黑树也是三叉链结构(左指针、右指针和父亲指针),有一个新的存储位来记录节点的颜色,这里实现的红黑树是kv模型。

enum Colour
{RED,//红色BLACK//黑色
};template<class K, class V>
struct RBTreeNode
{RBTreeNode<K, V>* _left;RBTreeNode<K, V>* _right;RBTreeNode<K, V>* _parent;pair<K, V> _kv;Colour _col;RBTreeNode(const pair<K, V>& kv):_left(nullptr), _right(nullptr), _parent(nullptr),_kv(kv),_col(RED)//默认的新节点都是红色的{}
};

二、实现红黑树

2.1 插入

红黑树的插入的与普通二叉搜索树的插入逻辑是一样的,不同的是插入新节点后要进行变色处理,符合前面的规则才行。
红黑树的插入一共分为两大类:

  1. 新插入的节点的父节点是黑色的,插入结束
  2. 新插入的节点的父节点是红色的,要变色处理

也就是说要看新插入的节点的父节点的颜色来确定是否本次插入结束。但是有个问题,新插入的节点说什么颜色的?其实看图就可以知道,插入的新节点必须是红色的,因为如果插入的是黑色节点,那么必然会导致每条路径上的黑色节点数量不相同,违反规则。

接下来看红黑树插入节点时是怎样变色的:
首先按照前面插入的两大类,如果插入节点的父节点是黑色的,就不需要进入变色调整;反之,如果插入节点的父节点存在且是红色的,说明此时有连续的红色节点,要变色处理。

这里需要定义几个节点的名字,方便叙述和画图:

  • c(cur)——当前新插入的节点
  • p(parent)——插入节点的父节点
  • g(grandfather)——父节点的父节点
  • u(uncle)——叔叔节点,父节点的另一边的节点

在这里插入图片描述
这4个节点主要看叔叔节点,根据叔叔节点分为两种情况。

情况一:叔叔存在且为红
p和u要变成黑色,g变成红色。如果g不是根节点,要向上更新,把g当成c;如果g是根节点,要把g变成黑色的,因为根节点必须是黑的。

1️⃣g是根节点

在这里插入图片描述

注意:不管p或者u是g的左边还是右边都是一样的,c在p的左边/右边都是一样的操作,不影响。

2️⃣g不是根节点
在这里插入图片描述

情况二:叔叔不存在或者叔叔存在且为黑

情况二里面又有4种变色方式(其实与其说是变色方式,不如直接说是旋转方式不同然后根据旋转情况来变色)

1️⃣p是g的左孩子,c是p的左孩子
进行右单旋,p变黑,g变红
在这里插入图片描述
在这里插入图片描述
上图的c不是新增,表示的是当它的叔叔节点u存在且为黑时的c不是新增。

注意:
这里u存在或者不存在也有两种情况,第一张图的c是新增的节点,u必然是不存在的,如果存在,会导致每条路径的黑色节点数量不相同;同理,第二张图的c刚开始是黑色的节点,它有自己的子树,是通过后面的向上变色处理才变红的,所以第二张图的u是必须存在的。总之一句话,u存不存在要符合规则

后面就以u不存在的情况处理
2️⃣p是g的右孩子,c是p的右孩子
进行左单旋,p变黑,g变红
在这里插入图片描述

3️⃣p是g的左孩子,c是p的右孩子
先左单旋§,再右单旋(g),g变红,c变黑
在这里插入图片描述

4️⃣p是g的右孩子,c是p的左孩子
先右单旋§,再左单旋(g),g变红,c变黑
在这里插入图片描述
代码:

//插入
bool Insert(const pair<K, V>& kv)
{//为空if (_root == nullptr){_root = new Node(kv);_root->_col = BLACK;//根节点都是黑色的,特殊处理return true;}//非空Node* cur = _root;Node* parent = nullptr;while (cur){if (cur->_kv.first < kv.first){parent = cur;cur = cur->_right;}else if (cur->_kv.first > kv.first){parent = cur;cur = cur->_left;}else{return false;//插入节点不能重复}}//插入新节点cur = new Node(kv);//红色的if (parent->_kv.first < kv.first){parent->_right = cur;}else{parent->_left = cur;}cur->_parent = parent;//调整颜色while (parent && parent->_col == RED){Node* grandfather = parent->_parent;//爷爷节点//父节点在爷爷节点的左边,那么叔叔节点在右边if (parent == grandfather->_left){Node* uncle = grandfather->_right;//情况一:叔叔存在且为红if (uncle && uncle->_col == RED){grandfather->_col = RED;uncle->_col = parent->_col = BLACK;cur = grandfather;//爷爷不是根,向上更新parent = cur->_parent;}//情况二:叔叔不存在/存在且为黑else{//单旋if (cur == parent->_left){RotateR(grandfather);//右单旋parent->_col = BLACK;//变色grandfather->_col = RED;}//左右双旋 // cur == parent->_rightelse{RotateL(parent);//先左单旋RotateR(grandfather);//再右单旋grandfather->_col = RED;//变色cur->_col = BLACK;}}}else//父节点在右边,叔叔在左边{Node* uncle = grandfather->_left;//情况一:叔叔存在且为红if (uncle && uncle->_col == RED){grandfather->_col = RED;uncle->_col = parent->_col = BLACK;cur = grandfather;//爷爷不是根,向上更新parent = cur->_parent;}//情况二:叔叔不存在/存在且为黑else{//单旋if (cur == parent->_right){RotateL(grandfather);//左单旋parent->_col = BLACK;//变色grandfather->_col = RED;}//右左双旋 // cur == parent->_leftelse{RotateR(parent);//先右单旋RotateL(grandfather);//再左单旋grandfather->_col = RED;//变色cur->_col = BLACK;}break;//经过情况二后跳出}}}_root->_col = BLACK;//统一处理,根必须是黑的return true;
}//左单旋
void RotateL(Node* parent)
{RotateSize++;Node* subR = parent->_right;Node* subRL = subR->_left;parent->_right = subRL;//不为空if (subRL){subRL->_parent = parent;}subR->_left = parent;Node* ppnode = parent->_parent;parent->_parent = subR;//处理parent如果为根if (parent == _root){_root = subR;subR->_parent = nullptr;}//不为根,处理与ppnode的连接else{if (ppnode->_left == parent){ppnode->_left = subR;}else{ppnode->_right = subR;}subR->_parent = ppnode;}
}//右单旋
void RotateR(Node* parent)
{RotateSize++;Node* subL = parent->_left;Node* subLR = subL->_right;parent->_left = subLR;//不为空if (subLR){subLR->_parent = parent;}subL->_right = parent;Node* ppnode = parent->_parent;parent->_parent = subL;if (parent == _root){_root = subL;subL->_parent = nullptr;}else{if (ppnode->_left == parent){ppnode->_left = subL;}else{ppnode->_right = subL;}subL->_parent = ppnode;}
}

2.2 与AVL树对比

红黑树与AVL树都是平衡二叉树,那为什么现实中绝大部分是使用红黑树,很少使用AVL树?下面我们来作数据对比,从两者的旋转次数、插入时间、平衡状态和高度来作分析。

测试代码:

RBTree<int, int> t1;
AVLTree<int, int> t2;const int N = 10000000;
vector<int> v;
v.reserve(N);
srand(time(0));for (size_t i = 0; i < N; i++)
{v.push_back(rand() + i);
}size_t begin1 = clock();
for (auto e : v)
{t1.Insert(make_pair(e, e));
}
size_t end1 = clock();size_t begin2 = clock();
for (auto e : v)
{t2.Insert(make_pair(e, e));
}
size_t end2 = clock();
//旋转次数
cout << "RBTree RoateSize:" << t1.getRotateSize() << endl;
cout << "AVLTree RoateSize:" << t2.getRotateSize() << endl;
//插入时间
cout << "RBTree Insert:" << end1 - begin1 << endl;
cout << "AVLTree Insert:" << end2 - begin2 << endl;
//平衡状态
cout << "RBTree IsBalance:" << t1.IsBalance() << endl;
cout << "AVLTree IsBalance:" << t2.IsBalance() << endl;
//树的高度
cout << "RBTree Height:" << t1.Height() << endl;
cout << "AVLTree Height:" << t2.Height() << endl;
//树的节点个数
cout << "RBTree Size:" << t1.Size() << endl;
cout << "AVLTree Size:" << t2.Size() << endl;

插入一千万个数据,运行结果:
在这里插入图片描述
可以发现,红黑树的旋转次数比AVL树少,插入时间相差不大,两种树都是平衡的,红黑树的高度略高一些。

总结:
由于高度上红黑树不会高出多少,所以搜索效率影响不大。从树的高度可知,AVL树是极致追求平衡的,所以要频繁的进行旋转,这也导致旋转次数明显比红黑树多,因此在旋转上开销较大,不及红黑树的性能更优越些,同时红黑树实现比较简单,所以实际运用中红黑树更多。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/541707.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

VS2022一个项目中运行多个c++程序

VS2022一个项目中运行多个c程序设置 问题情况解决 问题 一般使用vs2022都需要配置好一些路径依赖&#xff0c;但一个项目中只能使用一个源文件&#xff0c;这也是为了避免找不到那些依赖&#xff0c;可是我们就是想为了可以快速编写&#xff0c;而不是浪费在那些配置环境的时间…

面试常问:你在项目中遇到了哪些比较棘手的问题?怎么解决的?

你在项目中遇到了哪些比较棘手的问题?怎么解决的&#xff1f;这个问题是面试官经常会问的一个问题。 如果你回答我在项目中没有怎么遇到&#xff0c;那么面试官会觉得你什么都不会&#xff0c;对项目了解也不够深入也没有负责什么项目。 面试官其实还挺关心的是应聘者的问题…

【IJCAI】CostFormer即插即用的MVS高效代价体聚合Transformer,FaceChain团队出品

一、论文题目&#xff1a; CostFormer: Cost Transformer for Cost Aggregation in Multi-view Stereo&#xff0c;https://arxiv.org/abs/2305.10320 二、论文简介&#xff1a; 多视角立体是三维重建的一种重要实现方式&#xff0c;该方式会从一系列同一场景但不同视角的二维…

Navicat破解 Navicat下载安装 附教程 免费

百度网盘&#xff1a;https://pan.baidu.com/s/1wRRN_18_uXxPiIWCS4l43A 麻烦各位师傅帮忙填写一下问卷&#xff0c;提取码在问卷填写结束后显示~ 【https://www.wjx.cn/vm/mBBTTKm.aspx# 】 &#xff08;资料来源于网络&#xff0c;侵告删&#xff09;

【Spring IOC/DI】bean 的 5 种注册 与 5 种注入

什么是 bean 一个 bean 就是一个实例化对象 User user new User() 上面这行代码中的 user&#xff0c; 就是 User 类的实例化对象&#xff0c;即一个 bean&#xff08;User Bean&#xff09; 什么是 IOC Inversion of Control 控制反转&#xff08;反转对 bean 的控制&#…

虚拟机开机字体变大,进入系统后字体模糊

问题 虚拟机开机字体变大&#xff0c;进入系统后字体模糊。 原因 虚拟机配置问题。 解决办法 修改配置为如下:

【剪枝实战】使用VGGNet训练、稀疏训练、剪枝、微调等,剪枝出只有3M的模型

摘要 本次剪枝实战是基于下面这篇论文去复现的&#xff0c;主要是实现对BN层的γ/gamma进行剪枝操作&#xff0c;本文用到的代码和数据集都可以在我的资源中免费下载到。 相关论文&#xff1a;Learning Efficient Convolutional Networks through Network Slimming (ICCV 2017…

matplotlib如何设置中文为宋体,英文为新罗马Times New Roman

问题描述 论文附图通常需要将中文设置为宋体&#xff0c;英文设置为新罗马字体&#xff08;Times New Roman&#xff09;。matplotlib中可以这样设置字体&#xff1a; plt.rcParams[font.sans-serif] [SimSun] plt.rcParams[font.sans-serif] [Times New Roman]但是这样设置…

YOLOv8_pose-Openvino和ONNXRuntime推理【CPU】

纯检测系列&#xff1a; YOLOv5-Openvino和ONNXRuntime推理【CPU】 YOLOv6-Openvino和ONNXRuntime推理【CPU】 YOLOv8-Openvino和ONNXRuntime推理【CPU】 YOLOv7-Openvino和ONNXRuntime推理【CPU】 YOLOv9-Openvino和ONNXRuntime推理【CPU】 跟踪系列&#xff1a; YOLOv5/6/7-O…

Java项目:52 springboot基于SpringBoot的旅游网站的设计与实现013

作者主页&#xff1a;舒克日记 简介&#xff1a;Java领域优质创作者、Java项目、学习资料、技术互助 文中获取源码 项目介绍 旅游网站主要功能如下&#xff1a; 1.用户管理&#xff1a;注册、登录、退出、修改密码&#xff1b; 2.分类显示&#xff1a;显示旅游路线的分类&am…

openstack(T)启动实例状态为错误,如何解决

---基本服务得是正常的 ---1.在web界面看是什么错误 点击你的实例名称&#xff0c;在概况里面去查看 当时我的error &#xff1a;编码500 消息 No valid host was found. 错误原因 1&#xff1a;资源不足 2&#xff1a;未开启虚拟机cpu虚拟化 解决&#xff1a; 1.资源不…

百度飞桨大模型训练营:人工智能与大语言模型

文章目录 生成式AI、提示词工程和零代码应用开发人工智能概念机器学习深度学习 大语言模型大语言模型为什么大大语言模型为什么通用大语言模型的灵魂Transformer之前Transformer的优势 Transformer内部原理第一步——数据预处理第二步——编码器第三步——解码器第四步——Line…