数据结构之链式二叉树

当我们初步了解二叉树后

我们就可以进一步去深入学习二叉树了

1.链式二叉树的遍历

这里我们先去定义链式二叉树的结构

分为两个指针

一左一右

他们分别指向左子树和右子树

typedef int BTDataType;typedef struct BinaryTreeNode
{BTDataType data;struct BinartTreeNode* left;struct BinartTreeNode* right;
}TreeNode;

左右子树的节点又可以细分为:根,左子树,右子树

图中的1节点就是根,2和3则是左子树,456则是右子树

1.1二叉树的前序,中序,后序遍历


前序遍历、中序遍历和后序遍历。这些遍历方式指的是节点访问的顺序。

前序遍历:在前序遍历中,我们首先访问根节点,然后递归地进行左子树的前序遍历,接着递归地进行右子树的前序遍历。


中序遍历:中序遍历中,我们首先递归地进行左子树的中序遍历,然后访问根节点,最后递归地进行右子树的中序遍历。


后序遍历:后序遍历中,我们首先递归地进行左子树的后序遍历,然后递归地进行右子树的后序遍历,最后访问根节点。

而这里呢我们又遇到了老朋友递归

问题不大

我们利用一棵树为例子

图中的这一棵树

以一为根

接下来我们先进行前序遍历

1.1.1前序遍历

前序遍历中先根后左右

●所以我们先去访问根1

●访问完根1后就访问左节点2

●接下来以2为根访问2的左节点3

●然后以3为根访问3的左节点,这是他的左节点为空,所以我们返回也就是开始进行递归

●递归到一后,开始进行访问1的右节点4

●访问到四就以4为根访问4的左节点5

●访问5后发现没有左节点就递归到4访问4的右节点

●访问6时没有左节点右节点就开始递归到4再到1

●最后访问结束

这里呢,我们用N代表空

那么访问完打印后应该是这样的

1 2 3 N N N 4 5 N N 6 N N

1.1.2中序遍历

讨论完前序遍历我们进行中序遍历

中序遍历讲的是先左后根最后右

还是利用这棵树

遍历顺序:

●先是访问左子树,1的左子树是2,2的则是3,3没有了左子树也就是空,返回3,然后在访问3的右子树,空,返回到2

这是返回的应该是

N 3 N

●回到2后访问2的左子树空,所以返回到1

N 3 N 2 N

●回到一就访问1的右子树4,然后到4的左子树5,在访问5的左子树空,这时返回到5

N 3 N 2 N 1 N 5 N

这时会有疑问,为什么没有四,不是先访问到4吗?

这里没有4的原因是,返回到1后应该访问它的右子树,而右子树中还有一个左子树5,所以应该先访问5,这里的5优先访问

●然后返回到4,访问4的右子树6,这里优先访问6的左子树,为空,返回到6,访问右子树,为空

N 3 N 2 N 1 N 5 N 4 N 6 N

1.1.3后序遍历

后序遍历则是先左后右最后根

遍历顺序:

还是以这棵树为例


●先访问1的左子树,到3时,他的左子树为空,右子树为空

N N 3

●返回到2后,右子树为空,访问根2,返回1

N N 3 N 2

●回到一后,访问一的右子树,同时优先访问右子树中的左子树也就是节点五,访问五的左子树,然后是右子树,然后是五

 N N 3 N 2 N N 5

●J返回到五后访问4的右子树6,然后访问6的左子树和右子树

N N 3 N 2 N N 5 N N 6

●访问完6后就返回访问4,然后访问1

N N 3 N 2 N N 5 N N 6 4 1

2.遍历代码的实现

2.1.树的实现

首先我们需要手搓一棵树

定义出来树的结构

并需要创建新的空间,所以这里包装一个函数

typedef struct BinTreeNode
{struct BinTreeNode* left;struct BinTreeNode* right;int val;
}BTNode;
BTNode* BuyBTNode(int val)
{BTNode* newnode = (BTNode*)malloc(sizeof(BTNode));if (newnode == NULL){perror("malloc fail");return NULL;}newnode->val = val;newnode->left = NULL;newnode->right = NULL;return newnode;
}
// 手搓一棵树
BTNode* CreateTree()
{BTNode* n1 = BuyBTNode(1);BTNode* n2 = BuyBTNode(2);BTNode* n3 = BuyBTNode(3);BTNode* n4 = BuyBTNode(4);BTNode* n5 = BuyBTNode(5);BTNode* n6 = BuyBTNode(6);n1->left = n2;n1->right = n4;n2->left = n3;n4->left = n5;n4->right = n6;return n1;
}

这样就形成了图形中的树

2.2前序遍历代码

前序遍历的话我们需要用到递归

首如果检测到节点为空,这样的话就打印N并返回

如果没有

那么递归继续往下

因为是前序遍历

所以先递归左然后再递归右

void PreOrder(BTNode* root)
{if (root == NULL){printf("N ");return;}printf("%d ", root->val);PreOrder(root->left);PreOrder(root->right);
}

2.3中序遍历代码

中序遍历和前序遍历的不同是前序遍历先根后左右,中序遍历则是先左后根最后右

所以,我们还是先遇到空返回N

没有则是返回左,打印根ra

void InOrder(BTNode* root)
{if (root == NULL){printf("N ");return;}InOrder(root->left);printf("%d ", root->val);InOrder(root->right);
}

2.4后序遍历代码

后序遍历代码则是先左右最后根

所以

void PostOrder(BTNode* root)
{if (root = NULL){printf("N");return;}PostOrder(root->left);PostOrder(root->right);printf("%d ", root->val);
}

2.5测试的结果

3.获取节点个数

获取节点个数,正常情况下我们的思路是定义一个size

然后在遍历的时候进行++size

代码如下

int TreeSize(BTNode* root)
{static int size = 0;if (root == NULL)return 0;else++size;TreeSize(root->left);TreeSize(root->right);return size;
}

但这样会有一个缺点

我们没法去在这个函数里面重置我们的size

所以我们需要再主函数中

每调用完TreeSize函数,就需要重置一遍size

所以我们还有另外一个思路

直接去返回它的左节点和右节点,最后加一

利用递归的思想

代码如下

int TreeSize(BTNode* root)
{return root == NULL ? 0 :TreeSize(root->left) + TreeSize(root->right) + 1;
}

这样就非常巧妙的完成了节点的个数

1.获取叶节点个数
获取叶子结点个数,我们这里也用递归的方法

利用分治思想去解决这个问题

●代码思想:

1. 当遇到空树或者遇到空的节点时,也就是说这是的叶子为NULL,这是我们返回0

2. 当遇到左节点或者右节点为空,当节点不为空时,此时已经到达了叶子结点,所以返回1

3. 当遇到的不是叶节点时,我们需要到递归左节点的个数和右节点的个数,并进行递归返回

●代码思想:

对于整棵树来说,当我们遇到空树或者遇到节点为空的时候,这时的叶子结点为空,我们这时返回0,当不是上中情况的时候,我们从根往下去搜索,先搜索左节点,当左节点不为空,并且左节点的左子树和右子树都是空的时候,这时候就可以确定它是叶子了,也就是返回1,当搜索完左子树就可以搜索右子树,右子树也同理 

4.获取树的高度 

获取树的高度,我们也是利用分治的思想去实现这个代码

首先就是当我们要想返回高度的时候,我们需要调用到左右子树的高度

然后比较左右子树的高度,比较出最大的一个并返回

然后加1(因为我们递归的是左右子树的高度,我们需要整个树的高度,所以还需要加上根,也就是加一)

●代码思想:

1.当我们遇到空树或者遇到的节点为NULL,这时返回0

2.然后接下来去递归左子树和右子树

3.返回时,如果左子树大于右子树,那么就是左子树高度+1,否则右子树高度+1

 

//获取树的高度
int TreeHeight(BTNode* root)
{if (root == NULL){return 0;}TreeHeight(root->left);TreeHeight(root->right);return (TreeHeight(root->left) > TreeHeight(root->right) ? TreeHeight(root->left) : TreeHeight(root->right)) + 1;
}

但这个代码有一定的缺陷

我们可以看到,这个代码我们调用了两次TreeHeight(root->left)和TreeHeight(root->right)

在这一树中,我们调用多次函数,大大增加了计算的难度,在一棵小树中可能不明显,可当树更大时,这时候弊端就先显示出来了

所以我们可以改进一下代码,定义两个变量去接受返回值

然后比较两个返回值

//改进代码
int TreeHeight(BTNode* root)
{if (root == NULL){return 0;}/*TreeHeight(root->left);TreeHeight(root->right);return (TreeHeight(root->left) > TreeHeight(root->right) ? TreeHeight(root->left) : TreeHeight(root->right)) + 1;*/int Heightleft = TreeHeight(root->left);int Heightright = TreeHeight(root->right);return (Heightleft > Heightright ? Heightleft : Heightright + 1);
}

 

5.计算第K层节点个数 

计算k层节点的个数,我们可以看成计算左节点的(k-1)层和右节点(k-1)层的节点个数

因为我们不算顶部节点所以应该是k-1

●代码思想:

首先是如果是空树或者当遇到叶子结点外的空节点时,返回0

当遇到k为1的时候,这时只有一个根,也就返回1

其余情况均利用递归思想,去递归左右子树,注意此时的k应该变成k-1

//计算树k层的节点个数
int TreeKCount(BTNode* root, int k)
{if (root == NULL || k < 1){return 0;}if (k == 1){return 1;}return TreeKCount(root->left, k - 1) + TreeKCount(root->right, k - 1);
}

 

6.寻找某个节点 

寻找某个节点的话,我们也利用递归的方法,分治的思想去解决这个问题

寻找某个节点,那么这个节点如果不在根上,那么就在根的左子树和右子树上

那么就想下寻找

下边的节点也可以分为左子树和右子树和根

依次进行,就形成了递归

//寻找某个节点
BTNode* TreeFind(BTNode* root, int x)
{if (root == NULL){return 0;}if (x == root->val){return root;}TreeFind(root->left, x);TreeFind(root->right, x);return NULL;
}

很多人可能会想到这样的代码

可当我们去运行的时候,我们会发现找不到,不管x为多少都找不到

为什么呢?

原因是我们没有东西去接收

当我们找到的时候,我们递归需要往上递归

可上边的栈中没有可以接受的变量值

所以我们最终遍历完整棵树也找不到我们想找的节点

所以改一下代码

//寻找某个节点
BTNode* TreeFind(BTNode* root, int x)
{if (root == NULL){return 0;}if (x == root->val){return root;}BTNode* ret1 = TreeFind(root->left, x);BTNode* ret2 = TreeFind(root->right, x);if (ret1)return ret1;if (ret2)return ret2;return NULL;
}

 

这样我们利用新建立的节点去接受我们的左右子树的数据

然后如果不为空就不断返回,为空那么就返回0

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/542514.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

emment语法

文章目录 1. 生成普通的标签2. 生成 div类名3. 生成指定标签类名/id 值4. 生成带有子元素的标签5. 生成内部文本6. 一次可以生成多个标签7. 生成带有指定属性 的元素8. 生成相邻兄弟元素 1. 生成普通的标签 本质使用的就是元素选择器&#xff0c;例如 div p a 标签等等。 2. …

Machine Vision Technology:Lecture3 Edge detection | Fitting

Machine Vision Technology&#xff1a;Lecture3 Edge detection | Fitting Finite difference filters有限差分滤波器Effects of noise噪声对边缘检测影响Derivative theorem of convolution卷积的导数定理Derivative of Gaussian filter高斯滤波器的导数Smoothing vs. deriva…

Mybatis(搭建,CRUD,方法参数,XML映射文件,动态SQL)【详解】

目录 一.准备基础代码 Mybatis的通用配置 二. 基本CURD操作 1.查询-根据id查询一条 2.查询-查询数量 3.删除 4.新增 获取主键值 5.修改 6.查询-模糊查询 预编译SQL #{}与${}的区别【面试题】 三. Mybatis的方法参数与结果集 1.SQL里取方法参数的值 2.查询结果集…

win10虚拟机安装驱动教程

在虚拟机菜单栏中选择安装VMware Tools&#xff1a; 安装好后&#xff0c;在虚拟机中打开此电脑&#xff0c;双击DVD驱动器进行安装&#xff1a; 一直点击下一步&#xff1a; 安装完成&#xff1a; 此时重启虚拟机&#xff0c;发面小屏幕页面的虚拟机自动占满了全部屏幕&#x…

空气源热泵、地源热泵和水源热泵三种热泵的优缺点和选型比较

空气源热泵 空气源热泵是由电动机驱动的,利用空气中的热量作为低温热源,经过空调冷凝器或蒸发器进行热交换,然后通过循环系统,提取或释放热能,利用机组循环系统将能量转移到建筑物内用户需求。 1、适用范围广:适用温度范围在-7至40℃,并且一年四季全天候使用,不受阴、…

力扣209. 长度最小的子数组

思路&#xff1a;题目是 数组和 > target&#xff0c;不是等于target 双指针法&#xff1a;用for循环中的 r 来界定右边界的下标&#xff0c;右边界每移动一位&#xff0c;左边界可能需要移动多位&#xff0c;所以内部再用while, 当满足 数组和>target时&#xff0c;记录…

LabVIEW电液伺服作动器

LabVIEW电液伺服作动器 随着工业自动化技术的快速发展&#xff0c;电液伺服作动器在各类精密控制领域得到了广泛应用。基于CRIO架构&#xff0c;利用LabVIEW软件开发了一套电液伺服作动器测控系统&#xff0c;实现了高精度的位移同步控制与测量&#xff0c;有效提高了系统的控…

论文阅读:FCB-SwinV2 Transformer for Polyp Segmentation

这是对FCBFormer的改进&#xff0c;我的关于FCBFormer的论文阅读笔记&#xff1a;论文阅读FCN-Transformer Feature Fusion for PolypSegmentation-CSDN博客 1&#xff0c;整体结构 依然是一个双分支结构&#xff0c;总体结构如下&#xff1a; 其中一个是全卷积分支&#xff…

动漫人物和泉纱雾404源码

动漫人物和泉纱雾404源码&#xff0c;源码由HTMLCSSJS组成&#xff0c;记事本打开源码文件可以进行内容文字之类的修改&#xff0c;双击html文件可以本地运行效果&#xff0c;也可以上传到服务器里面&#xff0c;重定向这个界面 下载地址 动漫人物和泉纱雾404源码

基于直方图均衡化的图像去雾算法,Matlab实现

博主简介&#xff1a; 专注、专一于Matlab图像处理学习、交流&#xff0c;matlab图像代码/项目合作可以联系&#xff08;QQ:3249726188&#xff09; 个人主页&#xff1a;Matlab_ImagePro-CSDN博客 原则&#xff1a;代码均由本人编写完成&#xff0c;非中介&#xff0c;提供有偿…

【目标检测-数据集准备】DIOR转为yolo训练所需格式

【目标检测】DIOR遥感影像数据集&#xff0c;转为yolo系列模型训练所需格式。 标签文件位于Annotations下&#xff0c;格式为xml&#xff0c;yolo系列模型训练所需格式为txt&#xff0c;格式为 class_id x_center,y_center,w,h其中&#xff0c;train&#xff0c;text&#xff…

如何在Linux上使用git远程上传至gitee托管(add-commit-push指令详解)

&#x1f490; &#x1f338; &#x1f337; &#x1f340; &#x1f339; &#x1f33b; &#x1f33a; &#x1f341; &#x1f343; &#x1f342; &#x1f33f; &#x1f344;&#x1f35d; &#x1f35b; &#x1f364; &#x1f4c3;个人主页 &#xff1a;阿然成长日记 …