【动态规划刷题 5】 最小路径和地下城游戏

最小路径和

链接: 64. 最小路径和

给定一个包含非负整数的 m x n 网格 grid ,请找出一条从左上角到右下角的路径,使得路径上的数字总和为最小。

说明:每次只能向下或者向右移动一步。

在这里插入图片描述
输入:grid = [[1,3,1],[1,5,1],[4,2,1]]
输出:7
解释:因为路径 1→3→1→1→1 的总和最小。

示例 2:
输入:grid = [[1,2,3],[4,5,6]]
输出:12

1.状态表示

对于这种「路径类」的问题,我们的状态表⽰⼀般有两种形式:

  1. i. 从 [i, j] 位置出发,……;
  2. ii. 从起始位置出发,到达 [i, j] 位置,……;

这⾥选择第⼆种定义状态表⽰的⽅式:
dp[i][j] 表⽰:⾛到 [i, j] 位置处,此时的最小路径和。

2.状态转移方程

对于 dp[i][j] ,我们发现想要到达 [i, j] 位置,有两种⽅式:

  1. i. 从 [i, j] 位置的上⽅ [i - 1, j] 位置,向下⾛⼀步,此时到达 [i, j] 位置 ;
  2. ii. 从 [i, j] 位置的左边 [i, j - 1] 位置,向右⾛⼀步,此时到达 [i, j] 位置;

由于到 [i, j] 位置两种情况,并且我们要找的是最⼩路径,因此只需要这两种情况下的最⼩值,再加上 [i, j] 位置上本⾝的值即可

dp[i][j] = min(dp[i - 1][j], dp[i][j - 1]) + grid[i][j]

3. 初始化

为了解决一些边界条件,我们可以添加辅助节点,
在本题中,「添加⼀⾏」,并且「添加⼀列」后,所有位置的值可以初始化为⽆穷⼤,然后让dp[0][1] = dp[1][0] = 1 即可。

4. 填表顺序
根据「状态转移⽅程」,填表的顺序是「从上往下填写每⼀⾏」,「每⼀⾏从左往右」

5. 返回值
应该返回 dp[m][n] 的值;

代码:

   int minPathSum(vector<vector<int>>& grid) {int m=grid.size();int n=grid[0].size();vector<vector<int>> dp(m+1,vector<int>(n+1,INT_MAX));dp[0][1]=0;dp[1][0]=0;for(int i=1;i<=m;i++){for(int j=1;j<=n;j++){dp[i][j]=min(dp[i-1][j],dp[i][j-1])+grid[i-1][j-1];}}return dp[m][n];}

在这里插入图片描述

174. 地下城游戏(###)

链接: 174. 地下城游戏

恶魔们抓住了公主并将她关在了地下城 dungeon 的 右下角 。地下城是由 m x n 个房间组成的二维网格。我们英勇的骑士最初被安置在 左上角 的房间里,他必须穿过地下城并通过对抗恶魔来拯救公主。

骑士的初始健康点数为一个正整数。如果他的健康点数在某一时刻降至 0 或以下,他会立即死亡。有些房间由恶魔守卫,因此骑士在进入这些房间时会失去健康点数(若房间里的值为负整数,则表示骑士将损失健康点数);其他房间要么是空的(房间里的值为 0),要么包含增加骑士健康点数的魔法球(若房间里的值为正整数,则表示骑士将增加健康点数)。

为了尽快解救公主,骑士决定每次只 向右 或 向下 移动一步。

返回确保骑士能够拯救到公主所需的最低初始健康点数。

注意:任何房间都可能对骑士的健康点数造成威胁,也可能增加骑士的健康点数,包括骑士进入的左上角房间以及公主被监禁的右下角房间。

在这里插入图片描述

输入:dungeon = [[-2,-3,3],[-5,-10,1],[10,30,-5]]
输出:7
解释:如果骑士遵循最佳路径:右 -> 右 -> 下 -> 下 ,则骑士的初始健康点数至少为 7 。

示例 2:
输入:dungeon = [[0]]
输出:1

1.状态表示

这道题如果我们定义成:从起点开始,到达 [i, j] 位置的时候,所需的最低初始健康点数。
那么我们分析状态转移的时候会有⼀个问题:那就是我们当前的健康点数还会受到后⾯的路径的影响。也就是从上往下的状态转移不能很好地解决问题。(后效性问题)
这个时候我们要换⼀种状态表⽰:从 [i, j] 位置出发,到达终点时所需要的最低初始健康点数
这样我们在分析状态转移的时候,后续的最佳状态就已经知晓。
综上所述,定义状态表⽰为:
dp[i][j] 表⽰:从 [i, j] 位置出发,到达终点时所需的最低初始健康点数

2.状态转移方程

对于 dp[i][j] ,从 [i, j] 位置出发,下⼀步会有两种选择:

  1. 往右走一步,到达dp[i][j-1]的位置,根据dp[]数组的定义,需要满足的条件是,走到dp[i][j-1]时的生命值,必需大于等于dp[i][j-1] ,也就是:
    dp[i][j] +dungeon[i][j]>=dp[i][j+1], ==》》 dp[i][j] >=dp[i][j+1]-dungeon[i][j]

  2. 往下走一步,到达dp[i-1][j]的位置,同理可得,
    dp[i][j] >=dp[i+1][j]-dungeon[i][j]

综上所述,我们需要的是两种情况下的最⼩值,因此可得状态转移⽅程为:
dp[i][j] = min(dp[i + 1][j], dp[i][j + 1]) - dungeon[i][j]

但是,如果当前位置的 dungeon[i][j] 是⼀个⽐较⼤的正数的话, dp[i][j] 的值可能变成 0 或者负数,也就是最低点数会⼩于 1 ,那么骑⼠就会死亡。因此我们求出来的 dp[i][j] 如果⼩于等于 0 的话,说明此时的最低初始值应该为 1 。处理这种情况仅需让 dp[i][j] 与 1 取⼀个最⼤值即可:
dp[i][j] = max(1, dp[i][j])

3. 初始化

为了解决一些边界条件,我们可以添加辅助节点,
在本题中,在 dp 表最后⾯添加⼀⾏,并且添加⼀列后,所有的值都先初始化为⽆穷⼤,然后让dp[m][n - 1] = dp[m - 1][n] = 1 即可。

4. 填表顺序
根据「状态转移⽅程」,我们需要「从下往上填每⼀⾏」,「每⼀⾏从右往左」。

5. 返回值
应该返回 dp[0][0] 的值;

代码:

int calculateMinimumHP(vector<vector<int>>& dungeon) {int m=dungeon.size();int n=dungeon[0].size();vector<vector<int>> dp(m+1,vector<int>(n+1,INT_MAX));//dp[i][j]+dungeon[i][j+1]>=dp[i][j+1]    ->  dp[i][j]=dp[i][j+1]-dungeon[i][j]dp[m][n-1]=1;dp[m-1][n]=1;for(int i=m-1;i>=0;i--){for(int j=n-1;j>=0;j--){dp[i][j]=min(dp[i+1][j],dp[i][j+1])-dungeon[i][j];dp[i][j]=max(1,dp[i][j]);}}return dp[0][0];}

在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/54473.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Qt--QPlugin插件

写在前面 Qt–动态链接库一文中提到&#xff0c;动态方式加载dll只能加载 extern "C“ 的导出函数&#xff0c;而无法加载类&#xff0c;因此可以使用Qt提供的插件来实现导出类的动态加载。 QPlugin是Qt插件框架的一部分&#xff0c;是一种轻量级的插件系统&#xff0c;…

数据集的介绍及其标注

水到绝境是风景 人到绝境是重生 一、什么是目标检测 目标检测是计算机视觉领域的一个重要任务&#xff0c;旨在识别和定位图像或视频中的多个目标对象。与图像分类只关注图像属于哪个类别不同&#xff0c;目标检测不仅要确定目标所属的类别&#xff0c;还要准确地标记目标在图…

STM32 DHT11

DHT11 DHT11数字温湿度传感器是一款含有已校准数字信号输出的温湿度复合传感器。 使用单总线通信 该传感器包括一个电容式感湿元件和一个NTC测温元件&#xff0c;并于一个高性能8位单片机相连&#xff08;模数转换&#xff09;。 DHT11引脚说明 开漏模式下没有输出高电平的能…

一、3.外部硬件中断与进入保护模式

外部硬件中断&#xff1a;处理器接两根线NMI传输非屏蔽中断&#xff08;即无法屏蔽的中断&#xff09;和INTR传输可屏蔽中断 IR0到IR7优先级依次降低 处理器中中断标志位起决定作用&#xff0c;IF为0时屏蔽所有INTR引脚来的信号都被屏蔽 BIOS创建中断向量表 实时时钟和CMOS RAM…

数据可视化:Matplotlib详解及实战

1 Matplotlib介绍 Matplotlib是Python中最常用的可视化工具之一,可以非常方便地创建海量类型的2D图表和一些基本的3D图表。 Matplotlib提供了一个套面向绘图对象编程的API接口&#xff0c;能够很轻松地实现各种图像的绘制&#xff0c;并且它可以配合Python GUI工具&#xff08;…

VMware Workstation下载不同的版本

1&#xff1a;访问下载链接 https://customerconnect.vmware.com/cn/downloads/#all_products 2&#xff1a;拉倒下面去选择对应的下载内容 3&#xff1a;先选择大版本 4&#xff1a;大版本选择之后&#xff0c;就可以选择对应的小版本 各位再根据自己的选择进行下载就好了

Spring Boot 单元测试

目录 1.什么是单元测试&#xff1f; 2.单元测试的优点 3.Spring Boot 单元测试使用 3.1 生成单元测试的类 3.2 添加 Spring Boot 框架测试注解&#xff1a;SpringBootTest 3.3 添加单元测试业务逻辑 3.4 注解 Transactional 4. 断言 1.什么是单元测试&#xff1f; 单元…

运维第四次作业

1. 简述静态网页和动态网页的区别。 静态网页和动态网页的区别在于内容的生成方式。静态网页的内容在服务器上预先创建好&#xff0c;并在用户访问时直接传送给浏览器&#xff0c;内容不会改变。而动态网页的内容是在用户访问时才在服务器上生成&#xff0c;可以根据用户的请求…

数据结构——红黑树

文章目录 一.红黑树的定义二.红黑树的插入1.红黑树节点的定义2.红黑树的插入操作3.总结&#xff1a; 三.红黑树与AVL树的比较四.检验手写的红黑树五.源码 一.红黑树的定义 红黑树&#xff0c;是一种二叉搜索树&#xff0c;但在每个结点上增加一个存储位表示结点的颜色&#xff…

Typescript+React入门

初识Typescript 出现背景 Typescript&#xff08;以下简称TS&#xff09;实际上就是JavaScriptType&#xff0c;用数据类型的方式来约束了JS的变量定义 在JS的基础上增加了类型支持 在JS中大多数错误都是因为数据类型造成的&#xff0c;所以TS为了规避这个问题加入了类型限制…

【小沐学NLP】在线AI绘画网站(网易云课堂:AI绘画工坊)

文章目录 1、简介1.1 参与方式1.2 模型简介 2、使用费用3、操作步骤3.1 选择模型3.2 输入提示词3.3 调整参数3.4 图片生成 4、测试例子4.1 小狗4.2 蜘蛛侠4.3 人物4.4 龙猫 结语 1、简介 Stable Diffusion是一种强大的图像生成AI&#xff0c;它可以根据输入的文字描述词&#…

从特斯拉FSD v11.4.6,看FSD入华

从特斯拉FSD v11.4.6&#xff0c;看FSD入华 1. 芝加哥城区a. 亮点b. 问题 2. 小镇中心a. 亮点b. 问题 3. FSD入华a. 技术路线b. 场景 4. 参考视频 FSD最近更新了v11.4.6&#xff0c;本文根据2个FSD城区测试视频&#xff0c;一起看一下有哪些亮点和问题。 FSD入华的消息也甚嚣尘…