vue diff 双端比较算法

文章目录

  • 双端指针
  • 比较策略
    • 命中策略四
    • 命中策略二
    • 命中策略三
    • 命中策略一
    • 未命中四种策略,遍历旧节点列表
    • 新增情况一
    • 新增情况二
  • 删除节点
  • 双端比较的优势

双端指针

在这里插入图片描述

  • 使用四个变量 oldStartIdx、oldEndIdx、newStartIdx 以及 newEndIdx 分别存储旧 children 和新 children 的两个端点的位置索引
let oldStartIdx = 0
let oldEndIdx = prevChildren.length - 1
let newStartIdx = 0
let newEndIdx = nextChildren.length - 1
  • 除了位置索引之外,还需要拿到四个位置索引所指向的 VNode
let oldStartVNode = prevChildren[oldStartIdx]
let oldEndVNode = prevChildren[oldEndIdx]
let newStartVNode = nextChildren[newStartIdx]
let newEndVNode = nextChildren[newEndIdx]

比较策略

  • 使用旧 children 的头一个 VNode 与新 children 的头一个 VNode 比对,即 oldStartVNode 和 newStartVNode 比较对。
  • 使用旧 children 的最后一个 VNode 与新 children 的最后一个 VNode 比对,即 oldEndVNode 和 newEndVNode 比对。
  • 使用旧 children 的头一个 VNode 与新 children 的最后一个 VNode 比对,即 oldStartVNode 和 newEndVNode 比对。
  • 使用旧 children 的最后一个 VNode 与新 children 的头一个 VNode 比对,即 oldEndVNode 和 newStartVNode 比对。
    在这里插入图片描述
while (oldStartIdx <= oldEndIdx && newStartIdx <= newEndIdx) {if (oldStartVNode.key === newStartVNode.key) {// 步骤一:oldStartVNode 和 newStartVNode 比对} else if (oldEndVNode.key === newEndVNode.key) {// 步骤二:oldEndVNode 和 newEndVNode 比对} else if (oldStartVNode.key === newEndVNode.key) {// 步骤三:oldStartVNode 和 newEndVNode 比对} else if (oldEndVNode.key === newStartVNode.key) {// 步骤四:oldEndVNode 和 newStartVNode 比对}
}

命中策略四

  • 第一步:拿旧 children 中的 li-a 和新 children 中的 li-d 进行比对,由于二者 key 值不同,所以不可复用,什么都不做。
  • 第二步:拿旧 children 中的 li-d 和新 children 中的 li-c 进行比对,同样不可复用,什么都不做。
  • 第三步:拿旧 children 中的 li-a 和新 children 中的 li-c 进行比对,什么都不做。
  • 第四步:拿旧 children 中的 li-d 和新 children 中的 li-d 进行比对,由于这两个节点拥有相同的 key 值,所以我们在这次比对的过程中找到了可复用的节点。
    • li-d 节点所对应的真实 DOM 原本是最后一个子节点,并且更新之后它应该变成第一个子节点。所以我们需要把 li-d 所对应的真实 DOM 移动到最前方即可:
while (oldStartIdx <= oldEndIdx && newStartIdx <= newEndIdx) {if (oldStartVNode.key === newStartVNode.key) {// 步骤一:oldStartVNode 和 newStartVNode 比对} else if (oldEndVNode.key === newEndVNode.key) {// 步骤二:oldEndVNode 和 newEndVNode 比对} else if (oldStartVNode.key === newEndVNode.key) {// 步骤三:oldStartVNode 和 newEndVNode 比对} else if (oldEndVNode.key === newStartVNode.key) {// 步骤四:oldEndVNode 和 newStartVNode 比对// 先调用 patch 函数完成更新patch(oldEndVNode, newStartVNode, container)// 更新完成后,将容器中最后一个子节点移动到最前面,使其成为第一个子节点container.insertBefore(oldEndVNode.el, oldStartVNode.el)// 更新索引,指向下一个位置oldEndVNode = prevChildren[--oldEndIdx]newStartVNode = nextChildren[++newStartIdx]}
}

命中策略二

  • 上一步更新完成之后,新的索引关系可以用下图来表示:
    在这里插入图片描述
  • 第一步:拿旧 children 中的 li-a 和新 children 中的 li-b 进行比对,由于二者 key 值不同,所以不可复用,什么都不做。
  • 第二步:拿旧 children 中的 li-c 和新 children 中的 li-c 进行比对,此时,由于二者拥有相同的 key,所以是可复用的节点,但是由于二者在新旧 children 中都是最末尾的一个节点,所以是不需要进行移动操作的,只需要调用 patch 函数更新即可,同时将相应的索引前移一位
while (oldStartIdx <= oldEndIdx && newStartIdx <= newEndIdx) {if (oldStartVNode.key === newStartVNode.key) {// 步骤一:oldStartVNode 和 newStartVNode 比对} else if (oldEndVNode.key === newEndVNode.key) {// 步骤二:oldEndVNode 和 newEndVNode 比对// 调用 patch 函数更新patch(oldEndVNode, newEndVNode, container)// 更新索引,指向下一个位置oldEndVNode = prevChildren[--oldEndIdx]newEndVNode = nextChildren[--newEndIdx]} else if (oldStartVNode.key === newEndVNode.key) {// 步骤三:oldStartVNode 和 newEndVNode 比对} else if (oldEndVNode.key === newStartVNode.key) {// 步骤四:oldEndVNode 和 newStartVNode 比对// 先调用 patch 函数完成更新patch(oldEndVNode, newStartVNode, container)// 更新完成后,将容器中最后一个子节点移动到最前面,使其成为第一个子节点container.insertBefore(oldEndVNode.el, oldStartVNode.el)// 更新索引,指向下一个位置oldEndVNode = prevChildren[--oldEndIdx]newStartVNode = nextChildren[++newStartIdx]}
}

命中策略三

  • 上一步更新完成之后,新的索引关系可以用下图来表示:
    在这里插入图片描述
  • 第一步:拿旧 children 中的 li-a 和新 children 中的 li-b 进行比对,由于二者 key 值不同,所以不可复用,什么都不做。
  • 第二步:拿旧 children 中的 li-b 和新 children 中的 li-a 进行比对,不可复用,什么都不做。
  • 第三步:拿旧 children 中的 li-a 和新 children 中的 li-a 进行比对,此时,我们找到了可复用的节点。
    • 这一次满足的条件是:oldStartVNode.key === newEndVNode.key,这说明:li-a 节点所对应的真实 DOM 原本是第一个子节点,但现在变成了“最后”一个子节点,这里的“最后”并不是指真正意义上的最后一个节点,而是指当前索引范围内的最后一个节点。所以移动操作也是比较明显的,我们将 oldStartVNode 对应的真实 DOM 移动到 oldEndVNode 所对应真实 DOM 的后面即可
while (oldStartIdx <= oldEndIdx && newStartIdx <= newEndIdx) {if (oldStartVNode.key === newStartVNode.key) {// 步骤一:oldStartVNode 和 newStartVNode 比对} else if (oldEndVNode.key === newEndVNode.key) {// 步骤二:oldEndVNode 和 newEndVNode 比对// 调用 patch 函数更新patch(oldEndVNode, newEndVNode, container)// 更新索引,指向下一个位置oldEndVNode = prevChildren[--oldEndIdx]newEndVNode = newEndVNode[--newEndIdx]} else if (oldStartVNode.key === newEndVNode.key) {// 步骤三:oldStartVNode 和 newEndVNode 比对// 调用 patch 函数更新patch(oldStartVNode, newEndVNode, container)// 将 oldStartVNode.el 移动到 oldEndVNode.el 的后面,也就是 oldEndVNode.el.nextSibling 的前面container.insertBefore(oldStartVNode.el,oldEndVNode.el.nextSibling)// 更新索引,指向下一个位置oldStartVNode = prevChildren[++oldStartIdx]newEndVNode = nextChildren[--newEndIdx]} else if (oldEndVNode.key === newStartVNode.key) {// 步骤四:oldEndVNode 和 newStartVNode 比对// 先调用 patch 函数完成更新patch(oldEndVNode, newStartVNode, container)// 更新完成后,将容器中最后一个子节点移动到最前面,使其成为第一个子节点container.insertBefore(oldEndVNode.el, oldStartVNode.el)// 更新索引,指向下一个位置oldEndVNode = prevChildren[--oldEndIdx]newStartVNode = nextChildren[++newStartIdx]}
}

命中策略一

  • 上一步更新完成之后,新的索引关系可以用下图来表示:
    在这里插入图片描述
  • 第一步:拿旧 children 中的 li-b 和新 children 中的 li-b 进行比对,二者拥有相同的 key,可复用
while (oldStartIdx <= oldEndIdx && newStartIdx <= newEndIdx) {if (oldStartVNode.key === newStartVNode.key) {// 步骤一:oldStartVNode 和 newStartVNode 比对// 调用 patch 函数更新patch(oldStartVNode, newStartVNode, container)// 更新索引,指向下一个位置oldStartVNode = prevChildren[++oldStartIdx]newStartVNode = nextChildren[++newStartIdx]} else if (oldEndVNode.key === newEndVNode.key) {// 省略...} else if (oldStartVNode.key === newEndVNode.key) {// 省略...} else if (oldEndVNode.key === newStartVNode.key) {// 省略...}
}

未命中四种策略,遍历旧节点列表

在这里插入图片描述

  • 上图中 ①、②、③、④ 这四步中的每一步比对,都无法找到可复用的节点
  • 策略为:拿新 children 中的第一个节点尝试去旧 children 中寻找,试图找到拥有相同 key 值的节点
  • 如果在旧的 children 中找到了与新 children 中第一个节点拥有相同 key 值的节点,这意味着:旧 children 中的这个节点所对应的真实 DOM 在新 children 的顺序中,已经变成了第一个节点。所以我们需要把该节点所对应的真实 DOM 移动到最前头
    在这里插入图片描述
while (oldStartIdx <= oldEndIdx && newStartIdx <= newEndIdx) {if (oldStartVNode.key === newStartVNode.key) {// 省略...} else if (oldEndVNode.key === newEndVNode.key) {// 省略...} else if (oldStartVNode.key === newEndVNode.key) {// 省略...} else if (oldEndVNode.key === newStartVNode.key) {// 省略...} else {// 遍历旧 children,试图寻找与 newStartVNode 拥有相同 key 值的元素const idxInOld = prevChildren.findIndex(node => node.key === newStartVNode.key)if (idxInOld >= 0) {// vnodeToMove 就是在旧 children 中找到的节点,该节点所对应的真实 DOM 应该被移动到最前面const vnodeToMove = prevChildren[idxInOld]// 调用 patch 函数完成更新patch(vnodeToMove, newStartVNode, container)// 把 vnodeToMove.el 移动到最前面,即 oldStartVNode.el 的前面container.insertBefore(vnodeToMove.el, oldStartVNode.el)// 由于旧 children 中该位置的节点所对应的真实 DOM 已经被移动,所以将其设置为 undefinedprevChildren[idxInOld] = undefined}// 将 newStartIdx 下移一位newStartVNode = nextChildren[++newStartIdx]}
}
  • 因为旧节点已经找到并处理过了,所以后续的双端比较需要跳过处理过的节点
  • 将旧 children 中的 li-b 节点变成 undefined,然后旧节点指针遇到时跳过
while (oldStartIdx <= oldEndIdx && newStartIdx <= newEndIdx) {// undefined 跳过if (!oldStartVNode) {oldStartVNode = prevChildren[++oldStartIdx]} else if (!oldEndVNode) { // undefined 跳过oldEndVNode = prevChildren[--oldEndIdx]} else if (oldStartVNode.key === newStartVNode.key) {// 省略...} else if (oldEndVNode.key === newEndVNode.key) {// 省略...} else if (oldStartVNode.key === newEndVNode.key) {// 省略...} else if (oldEndVNode.key === newStartVNode.key) {// 省略...} else {const idxInOld = prevChildren.findIndex(node => node.key === newStartVNode.key)if (idxInOld >= 0) {const vnodeToMove = prevChildren[idxInOld]patch(vnodeToMove, newStartVNode, container)prevChildren[idxInOld] = undefinedcontainer.insertBefore(vnodeToMove.el, oldStartVNode.el)}newStartVNode = nextChildren[++newStartIdx]}
}

新增情况一

  • 节点所在的双端不满足四种策略,也不满足能找到旧节点

在这里插入图片描述

  • 在新 children 中,节点 li-d 是一个全新的节点。在这个例子中 ①、②、③、④ 这四步的比对仍然无法找到可复用节点,所以我们会尝试拿着新 children 中的 li-d 节点去旧的 children 寻找与之拥有相同 key 值的节点,结果很显然,我们无法找到这样的节点。这时说明该节点是一个全新的节点,我们应该将其挂载到容器中,由于 li-d 节点的位置索引是 newStartIdx,这说明 li-d 节点是当前这一轮比较中的“第一个”节点,所以只要把它挂载到位于 oldStartIdx 位置的节点所对应的真实 DOM 前面就可以了,即 oldStartVNode.el
while (oldStartIdx <= oldEndIdx && newStartIdx <= newEndIdx) {if (!oldStartVNode) {oldStartVNode = prevChildren[++oldStartIdx]} else if (!oldEndVNode) {oldEndVNode = prevChildren[--oldEndIdx]} else if (oldStartVNode.key === newStartVNode.key) {// 省略...} else if (oldEndVNode.key === newEndVNode.key) {// 省略...} else if (oldStartVNode.key === newEndVNode.key) {// 省略...} else if (oldEndVNode.key === newStartVNode.key) {// 省略...} else {const idxInOld = prevChildren.findIndex(node => node.key === newStartVNode.key)if (idxInOld >= 0) {const vnodeToMove = prevChildren[idxInOld]patch(vnodeToMove, newStartVNode, container)prevChildren[idxInOld] = undefinedcontainer.insertBefore(vnodeToMove.el, oldStartVNode.el)} else {// 使用 mount 函数挂载新节点,如果传入了最后一个参数,内部也是使用 insertBeforemount(newStartVNode, container, false, oldStartVNode.el)}newStartVNode = nextChildren[++newStartIdx]}
}

新增情况二

  • 节点所在的双端优先满足了四种策略

在这里插入图片描述

  • 最终双端比较完成后结果
    在这里插入图片描述
  • oldEndIdx 将比 oldStartIdx 的值要小,对 oldEndIdx 和 oldStartIdx 的值进行检查,如果在循环结束之后 oldEndIdx 的值小于 oldStartIdx 的值则说明新的 children 中存在还没有被处理的全新节点,这时我们应该调用 mount 函数将其挂载到容器元素中,观察上图可知,我们只需要把这些全新的节点添加到 oldStartIdx 索引所指向的节点之前即可
while (oldStartIdx <= oldEndIdx && newStartIdx <= newEndIdx) {// 省略...
}
if (oldEndIdx < oldStartIdx) {// 添加新节点for (let i = newStartIdx; i <= newEndIdx; i++) {mount(nextChildren[i], container, false, oldStartVNode.el)}
}

删除节点

在这里插入图片描述

  • 在进行双端比较后
    在这里插入图片描述
  • 此时 newEndIdx 的值小于 newStartIdx 的值,所以循环将终止,但是通过上图可以发现,旧 children 中的 li-b 节点没有得到被处理的机会,我们应该将其移除才行,循环结束后,一旦满足条件 newEndIdx < newStartId 则说明有元素需要被移除
while (oldStartIdx <= oldEndIdx && newStartIdx <= newEndIdx) {// 省略...
}
if (oldEndIdx < oldStartIdx) {// 添加新节点for (let i = newStartIdx; i <= newEndIdx; i++) {mount(nextChildren[i], container, false, oldStartVNode.el)}
} else if (newEndIdx < newStartIdx) {// 移除操作for (let i = oldStartIdx; i <= oldEndIdx; i++) {container.removeChild(prevChildren[i].el)}
}

双端比较的优势

  • 对于如下节点情况

在这里插入图片描述

  • 如果采用 React 根据相对位置的diff 方式来对上例进行更新,则会执行两次移动操作
    • 首先会把 li-a 节点对应的真实 DOM 移动到 li-c 节点对应的真实 DOM 的后面
    • 接着再把 li-b 节点所对应的真实 DOM 移动到 li-a 节点所对应真实 DOM 的后面,即:
      在这里插入图片描述
  • 如果采用 vue 的双端比较 diff
    • 第一步:拿旧 children 中的 li-a 和新 children 中的 li-c 进行比对,由于二者 key 值不同,所以不可复用,什么都不做。
    • 第二步:拿旧 children 中的 li-c 和新 children 中的 li-b 进行比对,不可复用,什么都不做。
    • 第三步:拿旧 children 中的 li-a 和新 children 中的 li-b 进行比对,不可复用,什么都不做。
    • 第四步:拿旧 children 中的 li-c 和新 children 中的 li-c 进行比对,此时,两个节点拥有相同的 key 值,可复用。

在这里插入图片描述

  • 可以看到,我们只通过一次 DOM 移动,就使得真实 DOM 的顺序与新 children 中节点的顺序一致,后序只需要 patch 不需要移动。双端比较更加符合人类思维,在移动 DOM 方面更具有普适性,能减少因为 DOM 结构的差异而产生的影响

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/55622.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

41.利用matlab 平衡方程用于图像(matlab程序)

1.简述 白平衡 白平衡的英文为White Balance&#xff0c;其基本概念是“不管在任何光源下&#xff0c;都能将白色物体还原为白色”&#xff0c;对在特定光源下拍摄时出现的偏色现象&#xff0c;通过加强对应的补色来进行补偿。 所谓的白平衡是通过对白色被摄物的颜色还原&…

机器学习——SMO算法推导与实践

一、 硬间隔-SMO算法推导 明天再说&#xff0c;啊。。。。感觉天空明朗了很多&#xff0c;即使现在已经很晚了 还是要打开柯南&#xff0c;看看电视&#xff0c;等待天气预报所说的台风天吧&#xff01; 一时之间&#xff0c;忽然失去了用markdown语法写下推导过程的勇气。。。…

使用Dockerfile构建镜像

使用Dockerfile构建镜像 使用Dockerfile构建镜像 创建一个空目录 docker mkdir docker进入此目录 cd docker创建并编辑DockerFile文件 vi touch DockerfileDockerfile文件的内容如下&#xff1a; from node label maintainer xxxqq.com RUN git clone -q https://github…

fishing之第二篇Gophish钓鱼平台搭建

文章目录 一、Gophish介绍二、Gophish部署三、Gophish配置0x01 功能介绍0x02 Sending Profiles(钓鱼邮箱发送配置)0x03 Email Templates(钓鱼邮件模板)0x04 Landing Pages(伪造钓鱼页面)0x05 Users & Groups(用户和组)0x06 Campaigns(钓鱼测试)0x07 Dashboard(仪…

Stable Diffusion - Stable Diffusion WebUI 支持 SDXL 1.0 模型的环境配置

欢迎关注我的CSDN&#xff1a;https://spike.blog.csdn.net/ 本文地址&#xff1a;https://spike.blog.csdn.net/article/details/132056980 SDXL 1.0 版本 是 Stable Diffusion 的最新版本&#xff0c;是基于潜在扩散模型的文本到图像生成技术&#xff0c;能够根据输入的任何文…

【VUE】前端实现防篡改的水印

效果 水印的作用 图片加水印的操作一般是由后端来完成&#xff0c;有些站点保护的知识产权的类型可能比较多&#xff0c;不仅仅是图片&#xff0c;可能还有视频、文字等等&#xff0c;对于不同类型的对象添加水印后端操作比较复杂&#xff0c;所有有些站点逐步的让前端去进行水…

Redhat Linux 安装MySQL安装手册

Redhat安装MySQL安装手册 1 下载2 上传服务器、解压并安装3 安装安装过程1&#xff1a;MySQL-shared-5.6.51-1.el7.x86_64.rpm安装过程2&#xff1a;MySQL-shared-compat-5.6.51-1.el7.x86_64.rpm安装过程3&#xff1a;MySQL-server-5.6.51-1.el7.x86_64.rpm安装过程4&#xff…

奥威BI—数字化转型首选,以数据驱动企业发展

奥威BI系统BI方案可以迅速构建企业级大数据分析平台&#xff0c;可以将大量数据转化为直观、易于理解的图表和图形&#xff0c;推动和促进数字化转型的进程&#xff0c;帮助企业更好地了解自身的运营状况&#xff0c;及时发现问题并采取相应的措施&#xff0c;提高运营效率和质…

Setup Factory Crack,设置Factory项目快速入门

Setup Factory Crack,设置Factory项目快速入门 Setup Factory为开发人员提供了一种无需学习专有脚本语言即可创建灵活安装系统的解决方案。Setup Factory提供开发人员所需的自定义和高级控制功能&#xff0c;所有这些功能都来自Setup Factory Visual Design Environment。您甚至…

Nginx可视化Nginx-gui

Github&#xff1a;GitHub - onlyGuo/nginx-gui: Nginx GUI Manager 运行方式支持docker、window 下载后压缩&#xff0c;直接运行startup.bat 默认账号密码&#xff1a;admin/admin

产品体系架构202308版

1.前言 当我们不断向前奔跑时&#xff0c;需要回头压实走过的路。不断扩张的同时把相应的内容沉淀下来&#xff0c;为后续的发展铺垫基石。 不知从何时起&#xff0c;产品的架构就面向了微服务/中台化/前后端分离/低代码化/分布式/智能化/运行可观测化的综合体&#xff0c;让…

uni-app:实现列表单选功能

效果图&#xff1a; 核心解析&#xff1a; 一、 <view class"item_all" v-for"(item, index) in info" :key"index"><view classposition parameter-info text-over :classitem.checked?"checked_parameter":""…