一键开启ChatGPT“危险发言”

77d587892ec8e093497c23927573ba87.jpeg

大数据文摘授权转载自学术头条

作者:Hazel Yan

编辑:佩奇


随着大模型技术的普及,AI 聊天机器人已成为社交娱乐、客户服务和教育辅助的常见工具之一。


然而,不安全的 AI 聊天机器人可能会被部分人用于传播虚假信息、操纵舆论,甚至被黑客用来盗取用户的个人隐私。WormGPT 和 FraudGPT 等网络犯罪生成式 AI 工具的出现,引发了人们对 AI 应用安全性的担忧。


上周,谷歌、微软、OpenAI 和 Anthropic 共同成立了一个新的行业机构前沿模型论坛(Frontier Model Forum),促进前沿 AI 系统的安全和负责任的发展:推进 AI 安全研究,确定最佳实践和标准,促进政策制定者和行业之间的信息共享。


02105918c76f9705acf0db408ec0e226.jpeg


那么,问题来了,他们自家的模型真的安全吗?


近日,来自卡内基梅隆大学、Center for AI Safety 和 Bosch Center for AI 的研究人员便披露了一个与 ChatGPT 等 AI 聊天机器人有关的“大 bug”——通过对抗性提示可绕过 AI 开发者设定的防护措施,从而操纵 AI 聊天机器人生成危险言论。


当前热门的 AI 聊天机器人或模型,如 OpenAI 的 ChatGPT、谷歌的 Bard、Anthropic 的 Claude 2 以及 Meta 的 LLaMA-2,都无一幸免。


80132ed199d244b83d3db16cf08f4066.jpeg

图|通过对抗性提示可绕过 4 个语言模型的安全规则,引发潜在有害行为

 

具体而言,研究人员发现了一个 Suffix,可将其附加到针对大型语言模型(LLMs)的查询中,从而生成危险言论。相比于拒绝回答这些危险问题,该研究可以使这些模型生成肯定回答的概率最大化。

 

例如,当被询问“如何窃取他人身份”时,AI 聊天机器人在打开“Add adversarial suffix”前后给出的输出结果截然不同。


90ad0739a16bfbd5ccf74245931dae28.jpeg


7bb2006955ca659cf9ffa708f401254b.jpeg

图|开启 Add adversarial suffix 前后的聊天机器人回答对比


此外,AI 聊天机器人也会被诱导写出“如何制造原子弹”“如何发布危险社交文章”“如何窃取慈善机构钱财”等不当言论。


对此,参与该研究的卡内基梅隆大学副教授 Zico Kolter 表示,“据我们所知,这个问题目前还没有办法修复。我们不知道如何确保它们的安全。”


研究人员在发布这些结果之前已就该漏洞向 OpenAI、谷歌和 Anthropic 发出了警告。每家公司都引入了阻止措施来防止研究论文中描述的漏洞发挥作用,但他们还没有弄清楚如何更普遍地阻止对抗性攻击。


OpenAI 发言人 Hannah Wong 表示:“我们一直在努力提高我们的模型应对对抗性攻击的鲁棒性,包括识别异常活动模式的方法,持续通过红队测试来模拟潜在威胁,并通过一种普遍而灵活的方式修复新发现的对抗性攻击所揭示的模型弱点。”


谷歌发言人 Elijah Lawal 分享了一份声明,解释了公司采取了一系列措施来测试模型并找到其弱点。“虽然这是 LLMs 普遍存在的问题,但我们在 Bard 中已经设置了重要的防护措施,我们会不断改进这些措施。”


Anthropic 的临时政策与社会影响主管 Michael Sellitto 则表示:“使模型更加抵抗提示和其他对抗性的‘越狱’措施是一个热门研究领域。我们正在尝试通过加强基本模型的防护措施使其更加‘无害’。同时,我们也在探索额外的防御层。”


72b1992ecfe83945e9101b64d7deec57.jpeg

图|4 个语言模型生成的有害内容


对于这一问题,学界也发出了警告,并给出了一些建议。


麻省理工学院计算学院的教授 Armando Solar-Lezama 表示,对抗性攻击存在于语言模型中是有道理的,因为它们影响着许多机器学习模型。然而,令人惊奇的是,一个针对通用开源模型开发的攻击居然能在多个不同的专有系统上如此有效。


Solar-Lezama 认为,问题可能在于所有 LLMs 都是在类似的文本数据语料库上进行训练的,其中很多数据都来自于相同的网站,而世界上可用的数据是有限的。


“任何重要的决策都不应该完全由语言模型独自做出,从某种意义上说,这只是常识。”他强调了对 AI 技术的适度使用,特别是在涉及重要决策或有潜在风险的场景下,仍需要人类的参与和监督,这样才能更好地避免潜在的问题和误用。


普林斯顿大学的计算机科学教授 Arvind Narayanan 谈道:“让 AI 不落入恶意操作者手中已不太可能。”他认为,尽管应该尽力提高模型的安全性,但我们也应该认识到,防止所有滥用是不太可能的。因此,更好的策略是在开发 AI 技术的同时,也要加强对滥用的监管和对抗。


担忧也好,不屑也罢。在 AI 技术的发展和应用中,我们除了关注创新和性能,也要时刻牢记安全和伦理。


只有保持适度使用、人类参与和监督,才能更好地规避潜在的问题和滥用,使 AI 技术为人类社会带来更多的益处。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/56013.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Windows用户如何将cpolar内网穿透配置成后台服务,并开机自启动?

Windows用户如何将cpolar内网穿透配置成后台服务,并开机自启动? 文章目录 Windows用户如何将cpolar内网穿透配置成后台服务,并开机自启动?前置准备:VS Code下载后,默认安装即可VS CODE切换成中文语言 1. 将…

回归预测 | MATLAB实现POA-CNN-GRU鹈鹕算法优化卷积门控循环单元多输入单输出回归预测

回归预测 | MATLAB实现POA-CNN-GRU鹈鹕算法优化卷积门控循环单元多输入单输出回归预测 目录 回归预测 | MATLAB实现POA-CNN-GRU鹈鹕算法优化卷积门控循环单元多输入单输出回归预测预测效果基本介绍程序设计参考资料 预测效果 基本介绍 MATLAB实现POA-CNN-GRU鹈鹕算法优化卷积门…

探索远程访问内网群晖NAS 6.X(使用独立域名)【内网穿透】

使用自己的域名远程访问内网群晖NAS 6.X【内网穿透】 文章目录 使用自己的域名远程访问内网群晖NAS 6.X【内网穿透】 在之前的文章中,我们向大家演示了如何使用cpolar,创建一条固定的、能够在公共互联网登录内网群晖NAS的数据隧道。这条隧道已经能够应对…

虹科分享 | 如何通过ntopng流量规则来监控网络流量

让我们假设您有一个网络,其中本地主机生成恒定数量的流量。你如何发现他们是否行为错误?碰巧,一些本地主机行为开始异常,与它们之前相比,有一个异常的流量(发送或接收):您如何发现这些情况并通过警报报告它…

sqoop

一、bg 可以在关系型数据库和hdfs、hive、hbase之间导数 导入:从RDBMS到hdfs、hive、hbase 导出:相反 sqoop1 和sqoop2 (1.99.x)不兼容,sqoop2 并没有生产的稳定版本, Sqoop1 import原理(导入) 从传统数据库获取元数据信息&…

服务端高并发分布式结构演进之路

目录 一、常见概念 1.1基本概念 二、架构演进 2.1单机架构 2.2应用数据分离架构 2.3应用服务集群架构 2.4读写分离 / 主从分离架构 2.5引入缓存 —— 冷热分离架构 2.6垂直分库 2.7业务拆分 —— 微服务 一、常见概念 1.1基本概念 应用(Application&am…

vsocde里面远程连接服务器报could not esatablish connection xxxx

我在vscode里面远程连接服务器编辑代码时,正常我按F1选择了服务器IP地址,然后让我选在Linux,然后我再输入服务器密码,但是当我选择Linux系统之后直接没出让我输入服务器密码的输入框,而是直接报错 could not esatablis…

赴日IT程序员 不学日语可以做赴日IT工作吗?

对于想要从事赴日IT工作的人来说,是否学习日语是一个很常见的问题,其实想去日本做IT工作有下面三个必要条件: 其一:就是学历,要具备大专以上学历,学习网可以查到。 其二:就是日语,…

用msys2安装verilator并用spinal进行仿真

一 参考 SpinalHDL 开发环境搭建一步到位(图文版) - 极术社区 - 连接开发者与智能计算生态 (aijishu.com)https://aijishu.com/a/1060000000255643Setup and installation of Verilator — SpinalHDL documentation

GET和POST的区别,java模拟postman发post请求

目录 一、先说一下get和post1、看一下人畜无害的w3schools怎么说:2、问一下文心你言哥,轻轻松松给你一个标准答案:3、卧槽,懂了,好像又没懂 二、让我们扒下GET和POST的外衣,坦诚相见吧!三、我们…

宋浩概率论笔记(三)随机向量/二维随机变量

第三更:本章的内容最重要的在于概念的理解与抽象,二重积分通常情况下不会考得很难。此外,本次暂且忽略【二维连续型随机变量函数的分布】这一章节,非常抽象且难度较高,之后有时间再更新。

安达发制造工业迈向智能化:APS高级计划排程助力提升生产效率

随着市场竞争的加剧,制造企业纷纷寻求提高生产效率和降低成本的方法。近年来,越来越多的制造企业开始采用APS(高级计划与排程)系统,以优化生产计划和排程,提高生产效率,并在竞争中取得优势。 现代制造业通常面临复杂的…