机器学习笔记之优化算法(十一)凸函数铺垫:梯度与方向导数

机器学习笔记之优化算法——凸函数铺垫:梯度与方向导数

引言

本节作为介绍凸函数的铺垫,简单介绍方向导数与梯度

回顾:偏导数

二元函数 f ( x , y ) f(x,y) f(x,y)为例,其关于变量的偏导数表示:三维空间中,曲面上某一点沿着 x x x轴方向或 y y y轴方向变化的速率。也就是说:
梯度下降法——铺垫中解释过,下图中描述斜率的红色切线不是方向;真正描述方向的是红色箭头。

  • ∂ f ( x , y ) ∂ x = f x ( x , y ) \begin{aligned}\frac{\partial f(x,y)}{\partial x} = f_x(x,y)\end{aligned} xf(x,y)=fx(x,y)表示函数 f ( x , y ) f(x,y) f(x,y)沿着 x x x轴方向的斜率
    下图中 P \mathcal P P沿着 x x x轴方向的红色直线所描述的斜率
  • 同理, ∂ f ( x , y ) ∂ y = f y ( x , y ) \begin{aligned}\frac{\partial f(x,y)}{\partial y} = f_y(x,y)\end{aligned} yf(x,y)=fy(x,y)表示函数 f ( x , y ) f(x,y) f(x,y)沿着 y y y轴方向的斜率。
    下图中 P \mathcal P P沿着 y y y轴方向的红色直线所描述的斜率
    偏导数图像示例

f ( x , y ) f(x,y) f(x,y)在点 P ( x 0 , y 0 ) \mathcal P(x_0,y_0) P(x0,y0)关于 x , y x,y x,y的偏导数分别表示如下:
第一个公式即: y = y 0 y=y_0 y=y0不变,观察变量 x x x的斜率; x x x同理。
{ f x ( x 0 , y 0 ) = lim ⁡ Δ x ⇒ 0 f ( x 0 + Δ x , y 0 ) − f ( x 0 , y 0 ) Δ x f y ( x 0 , y 0 ) = lim ⁡ Δ y ⇒ 0 f ( x 0 , y + Δ y ) − f ( x 0 , y 0 ) Δ y \begin{cases} \begin{aligned} & f_x(x_0,y_0) = \mathop{\lim}\limits_{\Delta x \Rightarrow 0} \frac{f(x_0 + \Delta x,y_0) - f(x_0,y_0)}{\Delta x} \\ & f_y(x_0,y_0) = \mathop{\lim}\limits_{\Delta y \Rightarrow 0} \frac{f(x_0,y+\Delta y) - f(x_0,y_0)}{\Delta y} \end{aligned} \end{cases} fx(x0,y0)=Δx0limΔxf(x0+Δx,y0)f(x0,y0)fy(x0,y0)=Δy0limΔyf(x0,y+Δy)f(x0,y0)
观察上图中的 P \mathcal P P点,它仅仅在 x , y x,y x,y两个方向(红色箭头)上有导数吗 ? ? ?并不是,在其他方向同样可以存在导数。由此,引出方向导数 ( Directional Derivative ) (\text{Directional Derivative}) (Directional Derivative)的概念。
例如下图中 P \mathcal P P点,其导数方向可以有很多。例如黄色箭头描述的方向。
其他方向-方向导数示例

方向余弦

关于某向量 l ⃗ \vec l l 在坐标系中表示如下:
向量l在坐标系中的表示
在坐标系中记作 l ⃗ = ( a , b ) \vec l =(a,b) l =(a,b);如果要将 l ⃗ \vec l l 单位化,得到单位向量 l ⃗ o \vec l^{o} l o,则执行:
l ⃗ o = 1 a 2 + b 2 ( a , b ) = ( a a 2 + b 2 , b a 2 + b 2 ) \begin{aligned} \vec l^{o} & = \frac{1}{\sqrt{a^2 + b^2}} (a,b) \\ & = \left(\frac{a}{\sqrt{a^2 + b^2}},\frac{b}{\sqrt{a^2 + b^2}}\right) \end{aligned} l o=a2+b2 1(a,b)=(a2+b2 a,a2+b2 b)
观察上图,可以将 a a 2 + b 2 = cos ⁡ α , b a 2 + b 2 = sin ⁡ α = cos ⁡ β \begin{aligned}\frac{a}{\sqrt{a^2 + b^2}} = \cos \alpha,\frac{b}{\sqrt{a^2 + b^2}} = \sin \alpha = \cos \beta\end{aligned} a2+b2 a=cosα,a2+b2 b=sinα=cosβ,最终 l ⃗ o \vec l^{o} l o可表示为: ( cos ⁡ α , cos ⁡ β ) (\cos \alpha,\cos \beta) (cosα,cosβ)
也就是说,单位向量可以表示成这种方向余弦的形式。

方向导数

方向导数的几何意义

依然以上述图形示例:可能存在各种各样(黄色箭头)的方向,这里以黄色直线箭头为例,该方向的在函数图像中的投影会呈现一条轨迹(黄色实线):
实际上这条轨迹就是 P \mathcal P P点,在该方向朝向的、与坐标平面 X O Y \mathcal X\mathcal O\mathcal Y XOY垂直的平面把 f ( x , y ) f(x,y) f(x,y)截断产生的图像
方向与投影
去掉其他多余的箭头,过 P ( x 0 , y 0 ) \mathcal P(x_0,y_0) P(x0,y0)对应的函数结果位置做一条切线,而切线的斜率即函数在 P \mathcal P P点处的斜率(黑色直线):
其中黄色菱形表示截断平面中间由实线与虚线组成的类似梯形的区域表示截面,只不过虚线部分的轨迹并不是当前方向对应的轨迹,不是我们我们关注的对象。
P在某方向上的切线斜率
由此可见: P \mathcal P P点的 36 0 o 360^o 360o方向上,每一个方向都存在一个截面,随着方向的变化,对应的函数结果 f ( x 0 , y 0 ) f(x_0,y_0) f(x0,y0)在截面上的位置得到不同的切线(斜率)结果
准确来说是截线而不是截面,因为函数 f ( ⋅ ) f(\cdot) f()空心

方向导数的定义

如何定义方向导数 ? ? ?见下图:
方向导数的定义

上述图像描述 X O Y \mathcal X\mathcal O\mathcal Y XOY平面上, P ( x 0 , y 0 ) \mathcal P(x_0,y_0) P(x0,y0)点沿着 l ⃗ \vec l l 方向前进了一个极小的长度 t t t并到达 A \mathcal A A点,对应 P \mathcal P P在函数上的映射结果 z 0 = f ( x 0 , y 0 ) z_0= f(x_0,y_0) z0=f(x0,y0)也会沿着对应的轨迹移动一个距离,并达到新的位置 z 0 ′ z_0' z0;假设 Δ Z = ∣ z 0 − z 0 ′ ∣ \Delta \mathcal Z = |z_0 - z_0'| ΔZ=z0z0,对应的方向导数可表示为:
lim ⁡ t ⇒ 0 Δ Z t \mathop{\lim}\limits_{t \Rightarrow 0} \frac{\Delta \mathcal Z}{t} t0limtΔZ
已知 P \mathcal P P点坐标是 ( x 0 , y 0 ) (x_0,y_0) (x0,y0),并且已知距离 t t t以及对应的 α , β \alpha,\beta α,β夹角,因而可以得到 A \mathcal A A的坐标: A ( x 0 + t ⋅ cos ⁡ α , y 0 + t ⋅ cos ⁡ β ) \mathcal A (x_0 + t \cdot \cos \alpha,y_0 + t \cdot \cos \beta) A(x0+tcosα,y0+tcosβ)。最终可以将 ( x 0 , y 0 ) (x_0,y_0) (x0,y0)处关于向量 l ⃗ \vec l l 的方向导数 ∂ Z ∂ l ⃗ ∣ ( x 0 , y 0 ) \begin{aligned}\frac{\partial \mathcal Z}{\partial {\vec l}}|_{(x_0,y_0)}\end{aligned} l Z(x0,y0)表达为如下形式:
∂ Z ∂ l ⃗ ∣ ( x 0 , y 0 ) = lim ⁡ t ⇒ 0 f ( x 0 + t ⋅ cos ⁡ α , y 0 + t ⋅ cos ⁡ β ) − f ( x 0 , y 0 ) t \frac{\partial \mathcal Z}{\partial {\vec l}}|_{(x_0,y_0)} = \mathop{\lim}\limits_{t \Rightarrow 0} \frac{f(x_0 + t \cdot \cos \alpha,y_0 + t \cdot \cos \beta) - f(x_0,y_0)}{t} l Z(x0,y0)=t0limtf(x0+tcosα,y0+tcosβ)f(x0,y0)

基于方向导数重新观察偏导数,可以发现:方向导数就是偏导数的一种特例。以 ∂ f ( x , y ) ∂ x \begin{aligned}\frac{\partial f(x,y)}{\partial x}\end{aligned} xf(x,y)为例。它等价于: l ⃗ \vec l l 的方向是 x x x轴的正方向
偏导数与方向导数
此时: α = 0 , β = π 2 ⇒ cos ⁡ α = 1 , cos ⁡ β = 0 \begin{aligned}\alpha = 0,\beta = \frac{\pi}{2} \Rightarrow \cos \alpha = 1,\cos \beta = 0\end{aligned} α=0,β=2πcosα=1,cosβ=0从而有:
此时的方向导数退化成了偏导数, ∂ f ( x , y ) ∂ y \begin{aligned}\frac{\partial f(x,y)}{\partial y}\end{aligned} yf(x,y)同理,这里不再赘述。
∂ Z ∂ l ⃗ = lim ⁡ t ⇒ 0 f ( x 0 + t , y 0 ) − f ( x 0 , y 0 ) t = f x ( x 0 , y 0 ) = ∂ f ( x , y ) ∂ x ∣ ( x 0 , y 0 ) \begin{aligned} \frac{\partial \mathcal Z}{\partial \vec l} = \mathop{\lim}\limits_{t \Rightarrow 0} \frac{f(x_0 + t,y_0) - f(x_0,y_0)}{t} = f_x(x_0,y_0) = \frac{\partial f(x,y)}{\partial x}|_{(x_0,y_0)} \end{aligned} l Z=t0limtf(x0+t,y0)f(x0,y0)=fx(x0,y0)=xf(x,y)(x0,y0)

方向导数与偏导数之间的关联关系

在函数 f ( ⋅ ) f(\cdot) f()在其定义域内可微的条件下,该函数在 ( x 0 , y 0 ) (x_0,y_0) (x0,y0)处关于方向向量 l ⃗ \vec l l 方向导数 ∂ Z ∂ l ⃗ ∣ ( x 0 , y 0 ) \begin{aligned}\frac{\partial \mathcal Z}{\partial {\vec l}}|_{(x_0,y_0)}\end{aligned} l Z(x0,y0)与该函数在 ( x 0 , y 0 ) (x_0,y_0) (x0,y0)处的偏导数 f x ( x 0 , y 0 ) , f y ( x 0 , y 0 ) f_x(x_0,y_0),f_y(x_0,y_0) fx(x0,y0),fy(x0,y0)之间的关联关系表示如下:
∂ Z ∂ l ⃗ ∣ ( x 0 , y 0 ) = f x ( x 0 , y 0 ) ⋅ cos ⁡ α + f y ( x 0 , y 0 ) ⋅ cos ⁡ β \begin{aligned}\frac{\partial \mathcal Z}{\partial {\vec l}}|_{(x_0,y_0)} = f_x(x_0,y_0) \cdot \cos \alpha + f_y(x_0,y_0) \cdot \cos \beta\end{aligned} l Z(x0,y0)=fx(x0,y0)cosα+fy(x0,y0)cosβ

证明过程

  • 在函数 f ( ⋅ ) f(\cdot) f()可微的条件下,在 ( x 0 , y 0 ) (x_0,y_0) (x0,y0)点关于 Z \mathcal Z Z的变化量 Δ Z \Delta \mathcal Z ΔZ可表示为:
    其中 O [ ( Δ x ) 2 + ( Δ y ) 2 ] \mathcal O\left[\sqrt{({\Delta x})^2 + (\Delta y)^2}\right] O[(Δx)2+(Δy)2 ]表示关于 ( Δ x ) 2 + ( Δ y ) 2 \sqrt{({\Delta x})^2 + (\Delta y)^2} (Δx)2+(Δy)2 的高阶无穷小。
    Δ Z = f x ( x 0 , y 0 ) ⋅ Δ x + f y ( x 0 , y 0 ) ⋅ Δ y + O [ ( Δ x ) 2 + ( Δ y ) 2 ] \Delta \mathcal Z = f_x(x_0,y_0) \cdot \Delta x + f_y(x_0,y_0) \cdot \Delta y + \mathcal O\left[\sqrt{({\Delta x})^2 + (\Delta y)^2}\right] ΔZ=fx(x0,y0)Δx+fy(x0,y0)Δy+O[(Δx)2+(Δy)2 ]
  • 由于全微分在任意方向上均成立。
    全微分方程
    因而有:
    { Δ x = t ⋅ cos ⁡ α Δ y = t ⋅ cos ⁡ β ( Δ x ) 2 + ( Δ y ) 2 = t 2 ⋅ ( cos ⁡ 2 α + cos ⁡ 2 β ) = t 2 α + β = π 2 \begin{cases} \begin{aligned} & \Delta x = t \cdot \cos \alpha \\ & \Delta y = t \cdot \cos \beta \\ & (\Delta x)^2 + (\Delta y)^2 = t^2 \cdot (\cos^2 \alpha + \cos^2 \beta) = t^2 \quad \alpha +\beta = \frac{\pi}{2} \end{aligned} \end{cases} Δx=tcosαΔy=tcosβ(Δx)2+(Δy)2=t2(cos2α+cos2β)=t2α+β=2π
  • 观察等式左侧:
    Δ Z \Delta \mathcal Z ΔZ表示 P ( x 0 , y 0 ) \mathcal P(x_0,y_0) P(x0,y0)沿着 l ⃗ \vec l l 移动 t t t到达 A \mathcal A A点前后函数结果的变化量。
    I left = Δ Z = f ( x 0 + t ⋅ cos ⁡ α , y 0 + t ⋅ cos ⁡ β ) − f ( x 0 , y 0 ) \mathcal I_{\text{left}} = \Delta \mathcal Z = f(x_0 + t \cdot \cos \alpha,y_0 + t \cdot \cos \beta) - f(x_0,y_0) Ileft=ΔZ=f(x0+tcosα,y0+tcosβ)f(x0,y0)
    观察等式右侧:
    将上述公式代入。
    I right = f x ( x 0 , y 0 ) ⋅ t ⋅ cos ⁡ α + f y ( x 0 , y 0 ) ⋅ t ⋅ cos ⁡ β + O ( t ) \mathcal I_{\text{right}} = f_x(x_0,y_0) \cdot t \cdot \cos \alpha + f_y(x_0,y_0) \cdot t \cdot \cos \beta + \mathcal O(t) Iright=fx(x0,y0)tcosα+fy(x0,y0)tcosβ+O(t)
  • I left , I right \mathcal I_{\text{left}},\mathcal I_{\text{right}} Ileft,Iright同时除以 t t t,等式两端依然相等:
    并令 I left \mathcal I_{\text{left}} Ileft t ⇒ 0 t \Rightarrow 0 t0,因为 I Right \mathcal I_{\text{Right}} IRight中不含 t ( O ( t ) t = 0 ) t \left(\begin{aligned}\frac{\mathcal O(t)}{t} = 0\end{aligned} \right) t(tO(t)=0),因此不产生影响。
    { I right t = f x ( x 0 , y 0 ) ⋅ cos ⁡ α ⋅ t + f y ( x 0 , y 0 ) ⋅ cos ⁡ β ⋅ t + O ( t ) t = f x ( x 0 , y 0 ) ⋅ cos ⁡ α + f y ( x 0 , y 0 ) ⋅ cos ⁡ β lim ⁡ t ⇒ 0 I l e f t t = lim ⁡ t ⇒ 0 f ( x 0 + t ⋅ cos ⁡ α , y 0 + t ⋅ cos ⁡ β ) − f ( x 0 , y 0 ) t = ∂ Z ∂ l ⃗ ∣ ( x 0 , y 0 ) \begin{cases} \begin{aligned} \frac{\mathcal I_{\text{right}}}{t} & = \frac{f_x(x_0,y_0) \cdot \cos \alpha \cdot t + f_y(x_0,y_0) \cdot \cos \beta \cdot t + \mathcal O(t)}{t} \\ & = f_x(x_0,y_0) \cdot \cos \alpha + f_y(x_0,y_0) \cdot \cos \beta \\ \mathop{\lim}\limits_{t \Rightarrow 0} \frac{\mathcal I_{left}}{t} & = \mathop{\lim}\limits_{t \Rightarrow 0} \frac{f(x_0 + t \cdot \cos \alpha,y_0 + t \cdot \cos \beta) - f(x_0,y_0)}{t} \\ & = \frac{\partial \mathcal Z}{\partial \vec l}|_{(x_0,y_0)} \end{aligned} \end{cases} tIrightt0limtIleft=tfx(x0,y0)cosαt+fy(x0,y0)cosβt+O(t)=fx(x0,y0)cosα+fy(x0,y0)cosβ=t0limtf(x0+tcosα,y0+tcosβ)f(x0,y0)=l Z(x0,y0)
  • 最终有:
    ∂ Z ∂ l ⃗ ∣ ( x 0 , y 0 ) = f x ( x 0 , y 0 ) ⋅ cos ⁡ α + f y ( x 0 , y 0 ) ⋅ cos ⁡ β \frac{\partial \mathcal Z}{\partial \vec l}|_{(x_0,y_0)} = f_x(x_0,y_0) \cdot \cos \alpha + f_y(x_0,y_0) \cdot \cos \beta l Z(x0,y0)=fx(x0,y0)cosα+fy(x0,y0)cosβ
    证毕。

梯度 ( Gradient ) (\text{Gradient}) (Gradient)

关于梯度,它的返回结果是一个向量形式。关于函数 f ( x , y ) f(x,y) f(x,y),其梯度向量通常记作: grad  f ( x , y ) \text{grad } f(x,y) grad f(x,y)或者 ∇ f ( x , y ) \nabla f(x,y) f(x,y)
其具体表示为:
∇ f ( x , y ) = [ f x ( x , y ) , f y ( x , y ) ] \nabla f(x,y) = \left[f_x(x,y),f_y(x,y)\right] f(x,y)=[fx(x,y),fy(x,y)]
很明显:梯度向量中的元素就是 f ( x , y ) f(x,y) f(x,y)针对不同自变量 x , y x,y x,y的偏导数。因此它的计算并不麻烦,如何理解梯度向量 ? ? ?具体从方向大小两个角度对梯度向量进行认知。

回顾上面的方向导数 ∂ Z ∂ l ⃗ \begin{aligned}\frac{\partial \mathcal Z}{\partial \vec l}\end{aligned} l Z,它可以表示成如下形式:

  • 两向量之间的内积形式。
  • l ⃗ o \vec l^{o} l o l ⃗ \vec l l 的单位向量结果。
    ∂ Z ∂ l ⃗ = f x ( x , y ) ⋅ cos ⁡ α + f y ( x , y ) ⋅ cos ⁡ β = [ f x ( x , y ) , f y ( x , y ) ] ( cos ⁡ α cos ⁡ β ) = ∇ f ( x , y ) ⋅ l ⃗ o \begin{aligned} \frac{\partial \mathcal Z}{\partial \vec l} & = f_x(x,y) \cdot \cos \alpha + f_y(x,y) \cdot \cos \beta \\ & = \left[f_x(x,y),f_y(x,y)\right] \begin{pmatrix} \cos \alpha \\ \cos \beta \end{pmatrix} \\ & = \nabla f(x,y) \cdot \vec l^{o} \end{aligned} l Z=fx(x,y)cosα+fy(x,y)cosβ=[fx(x,y),fy(x,y)](cosαcosβ)=f(x,y)l o

首先,由于 x , y x,y x,y轴描述的方向是确定的,因而在某点 ( x , y ) (x,y) (x,y)处的梯度向量也同样是固定;但 l ⃗ o \vec l^{o} l o却不固定。由于是内积结果,我们可以将其展开:
∂ Z ∂ l ⃗ = ∇ f ( x , y ) ⋅ l ⃗ o = ∣ ∣ ∇ f ( x , y ) ∣ ∣ ⋅ ∣ ∣ l ⃗ o ∣ ∣ ⋅ cos ⁡ θ \begin{aligned}\frac{\partial \mathcal Z}{\partial \vec l} & = \nabla f(x,y) \cdot \vec l^{o} \\ & = ||\nabla f(x,y)|| \cdot ||\vec l^{o}|| \cdot \cos \theta \end{aligned} l Z=f(x,y)l o=∣∣∇f(x,y)∣∣∣∣l o∣∣cosθ
观察:由于 ∣ ∣ ∇ f ( x , y ) ∣ ∣ = [ f x ( x , y ) ] 2 + [ f y ( x , y ) ] 2 ||\nabla f(x,y)|| = [f_x(x,y)]^2 + [f_y(x,y)]^2 ∣∣∇f(x,y)∣∣=[fx(x,y)]2+[fy(x,y)]2,因而在函数 f ( ⋅ ) f(\cdot) f()某一点 ( x , y ) (x,y) (x,y)确定的条件下,其值也是固定的;并且 ∣ ∣ l ⃗ o ∣ ∣ = 1 ||\vec l^{o}|| = 1 ∣∣l o∣∣=1。因此:影响 ∂ Z ∂ l ⃗ \begin{aligned}\frac{\partial \mathcal Z}{\partial \vec l}\end{aligned} l Z大小的因素只有向量 ∇ f ( x , y ) \nabla f(x,y) f(x,y)与向量 l ⃗ o \vec l^{o} l o之间的夹角 cos ⁡ θ \cos \theta cosθ

由于 cos ⁡ θ ∈ [ − 1 , 1 ] \cos \theta \in [-1,1] cosθ[1,1],因此 θ = 0 \theta = 0 θ=0时,也就是 l ⃗ o \vec l^{o} l o ∇ f ( x , y ) \nabla f(x,y) f(x,y)方向重合时,方向导数取得最大值,最大值即:
∂ Z ∂ l ⃗ = ∣ ∣ ∇ f ( x , y ) ∣ ∣ \frac{\partial \mathcal Z}{\partial \vec l} = ||\nabla f(x,y)|| l Z=∣∣∇f(x,y)∣∣
也就是说:当前点 ( x , y ) (x,y) (x,y),选择梯度方向时,它的斜率(变化量)最大

相关参考:
【多元微分专题】第六期:方向导数和梯度的直观理解

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/56437.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

python编写小程序有界面,python编写小程序的运行

大家好,小编为大家解答python编写小程序怎么看代码的的问题。很多人还不知道python编写小程序的运行,现在让我们一起来看看吧! Python第一个简单的小游戏 temp input("请猜一猜姐姐的幸运数字是: ") guess int(temp) …

生成2×2 或3*3 混淆矩阵(confusion matrix)的python代码

该代码可以生成22的混淆矩阵。每个矩阵对应的数值可以自行改变。 代码如下: import numpy as np import matplotlib.pyplot as plt# 随机生成值 import numpy as np import matplotlib.pyplot as plt# 创建一个2x2的二分类数据矩阵。这里可以手动改变值 data np…

skywalking全链路追踪

文章目录 一、介绍二、全链路追踪1. 测试1 - 正常请求2. 测试2 - 异常请求 三、过滤非业务请求链路1. 链路忽略插件2. 配置3. 测试 一、介绍 在上一篇文章skywalking安装教程中我们介绍了skywalking的作用以及如何将其集成到我们的微服务项目中。本篇文章我们介绍在微服务架构…

CSS调色网有哪些

本文章转载于湖南五车教育,仅用于学习和讨论,如有侵权请联系 1、https://webgradients.com/ Wbgradients 是一个在线调整渐变色的网站 ,可以根据你想要的调整效果,同时支持复制 CSS 代码,可以更好的与开发对接。 Wbg…

leetcode357周赛

2810. 故障键盘 核心思想:自己想的笨办法,枚举s,然后遇到i就翻转。比较好的方法就是双端队列,遇到i字母原本往后加的就往前加,然后读的时候反过来读,往前加的就往后加,读的话就从前往后&#x…

【设计模式——学习笔记】23种设计模式——观察者模式Observer(原理讲解+应用场景介绍+案例介绍+Java代码实现)

文章目录 案例引入原始方案实现实现问题分析 介绍基础介绍登场角色 案例实现案例一类图实现分析 案例二类图实现 观察者模式在JDK源码的应用总结文章说明 案例引入 有一个天气预报项目,需求如下: 气象站可以将每天测量到的温度、湿度、气压等等以公告的…

(具体解决方案)训练GAN深度学习的时候出现生成器loss一直上升但判别器loss趋于0

今天小陶在训练CGAN的时候出现了绷不住的情况,那就是G_loss(生成器的loss值)一路狂飙,一直上升到了6才逐渐平稳。而D_loss(判别器的loss值)却越来越小,具体的情况就看下面的图片吧。其实这在GAN…

Qt 中引入ffmpeg 动态库

1、前期准备 在qt引入ffmpeg动态库的时候,需要准备ffmpeg的动态库和头文件。 2、打开qt项目 在qt项目的.pro文件中添加以下几行代码 INCLUDEPATH $$PWD/thirtLib/ffmpeg4.2/include win32: LIBS -L$$PWD/thirtLib/ffmpeg4.2/lib/ -lavcodec -lavdevice -lavf…

Pytorch深度学习-----损失函数(L1Loss、MSELoss、CrossEntropyLoss)

系列文章目录 PyTorch深度学习——Anaconda和PyTorch安装 Pytorch深度学习-----数据模块Dataset类 Pytorch深度学习------TensorBoard的使用 Pytorch深度学习------Torchvision中Transforms的使用(ToTensor,Normalize,Resize ,Co…

安全防护,保障企业图文档安全的有效方法

随着企业现在数据量的不断增加和数据泄露事件的频发,图文档的安全性成为了企业必须高度关注的问题。传统的纸质文件存储方式已不适应现代企业的需求,而在线图文档管理成为了更加安全可靠的数字化解决方案。那么在在线图文档管理中,如何采取有…

小研究 - MySQL 数据库下存储过程的综合运用研究

信息系统工程领域对数据安全的要求比较高,MySQL 数据库管理系统普遍应用于各种信息系统应用软件的开发之中,而角色与权限设计不仅关乎数据库中数据保密性的性能高低,也关系到用户使用数据库的最低要求。在对数据库的安全性进行设计时&#xf…

软件工程专业应该学什么?

昨天,我朋友的孩子报考了软件工程专业,问我软件工程到底学啥?所以我给他开列了一个书单。 现在高校开了一堆花名头的专业: 偏技术类:云计算、大数据、人工智能、物联网 偏应用类:电子商务、信息管理 但我个…