【机器学习300问】48、如何绘制ROC曲线?

        ROC曲线(受试者工作特征曲线)是一种用于可视化评估二分类模型性能的指标。特别是在不同阈值情况下模型对正类和负类的区分能力。那么“阈值”到底是个什么呢?ROC曲线中的每一个点到底是什么意思?

一、ROC曲线的绘制【理论】

        二分类器(模型)输出的是预测样本的正类概率,模型在预测完所有样本的概率后会对其进行降序排序。假设一个样本被二分类器预测输出的概率是0.6,那么到底这个样本是正类还是负类呢?如果我们认为超过0.5的概率就是正类,那么显然该样本的预测标签为“正”。但如果我们认为超过0.6才算正类,那么样本的标签就成“负”的了。所以“阈值”就是人们判定预测结果到底正还是负的一个依据。

        阈值,预测概率大于该阈值样本判定为正,预测概率小于该阈值样本判定为负。ROC曲线绘制的过程,就是逐渐调整阈值,计算每次调整的阈值对应的(FPR,TPR),并在表格上绘制出该点的位置,最后把所有点连起来就得到了ROC曲线。

二、ROC曲线的绘制【实践】

(1)来点数据

序号真实标签模型输出概率(降序排列)
110.95
210.9
310.85
410.8
510.75
600.7
700.65
810.6
900.55
1000.5
1110.45
1200.4
1300.35
1400.3
1510.25
1600.2
1700.15
1800.1
1900.05
2010.0

        假设测试集中有20个样本,如上表所示按照概率降序排列。 分别列出了样本序号,样本真实的分类,模型预测输出的概率。

(2)文字演示

        当阈值为正无穷的时候,也就是说哪怕样本的概率是1,也没有一个样本被模型认为是正类,分类器认为全部都是负的,此时的FP=TP=0,显然FPR=TPR=0,在曲线上的坐标就是(0,0)

        当阈值设定为0.9的时候,上表中样本1和2都被预测为正。此时的P=9,TP=2得到TPR=2/9=0.22。此时没有预测错的样本FP=0算出FPR=0/11=0。最终的在曲线上的坐标就是(0,0.22)

        依次按照文字描述的过程,就可以计算得到所有阈值(这里我们将预测值的分度值设定成0.1,从1.0逐渐下降至0.0)坐标。将点连城线就得到了ROC曲线。

(3)代码演示

① 导入必要的库

import numpy as np
import pandas as pd
from sklearn.metrics import roc_curve, auc
import matplotlib.pyplot as plt

② 构造测试集

# 假设我们有如上表格所示的数据存储在一个DataFrame中
sample_data = pd.DataFrame({'真实标签': [1, 1, 1, 1, 1, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 1],'模型输出概率': [0.95, 0.9, 0.85, 0.8, 0.75, 0.7, 0.65, 0.6, 0.55, 0.5, 0.45, 0.4, 0.35, 0.3, 0.25, 0.2, 0.15, 0.1, 0.05, 0.0]
})
# 可以输出查看一下sample_data

 ③ 绘制ROC曲线

# 将'真实标签'转化为二进制形式(通常真实标签会被编码为0和1)
true_labels = sample_data['真实标签'].astype(int)# 获取'模型输出概率'
predicted_probs = sample_data['模型输出概率']# 计算ROC曲线所需的各项指标
fpr, tpr, _ = roc_curve(true_labels, predicted_probs, pos_label=1)# 计算曲线下面积(AUC)
roc_auc = auc(fpr, tpr)# 绘制ROC曲线
plt.figure()
plt.plot(fpr, tpr, label='ROC curve (area = %0.2f)' % roc_auc)
plt.plot([0, 1], [0, 1], 'k--')  # 平行于坐标轴的直线,代表随机猜测的结果
plt.xlim([0.0, 1.0])
plt.ylim([0.0, 1.0])
plt.xlabel('False Positive Rate')
plt.ylabel('True Positive Rate')
plt.title('Receiver Operating Characteristic Curve')
plt.legend(loc="lower right")
plt.show()

        如果我们在图中把0.1,0.2一直到1这十个阈值标出来的话,就是下面这个图:

        在我们文字演示时,设定当阈值=0.9的时候,对应的坐标(0.0.22)在图中很清晰的现实出来了。 上图的代码阈值刻度是sklearn.metrics.roc_curve 函数依据模型输出的概率得分y_score,以排序后从最小到最大的顺序依次作为阈值,计算出每个阈值下的真阳性率(TPR)和假阳性率(FPR),从而生成一系列坐标点绘制成ROC曲线。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/564685.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

LabVIEW电动汽车直流充电桩监控系统

LabVIEW电动汽车直流充电桩监控系统 随着电动汽车的普及,充电桩的安全运行成为重要议题。通过集成传感器监测、单片机技术与LabVIEW开发平台,设计了一套电动汽车直流充电桩监控系统,能实时监测充电桩的温度、电压和电流,并进行数…

Notepad++ 如何调整显示字面大小

在 Notepad 上,可以使用 ctrl 加上鼠标的左键来滚动来进行调整。 如何恢复默 可以使用 Ctrl 加数字键盘上的 / 键 来恢复默认设置。 当然也可以通过菜单栏上 view 菜单下的 Zoom 选项。 上面的界面中可以看到我们的在 Notepad 中使用的选项。 Notepad 如何调整显示…

pycharm搭建新的解释器及删除处理

目录 1.创建虚拟环境 个人实际操作: 对于“继承全局站点包”: 2.创建一个新项目 3.删除操作 (1)删除解释器 (2)删除新建项目 1.创建虚拟环境 Pycharm官方文档说明网址: Configure a virt…

02课程发布模块之部署Nginx

部署Nginx 部署网关 通过Nginx访问后台网关,然后由网关再将请求转发到具体的微服务,网关会把请求转发到具体的服务 upstream gatewayserver{server 127.0.0.1:63010 weight10; } # 网站首页对应的虚拟机 server {listen 80;server_name www.51xuecheng.cn…

基于SpringBoot+Vue+Mybatis的408刷题小程序管理端

简介 原始数据:书目信息、章节信息、题目信息、系统菜单、系统角色、系统用户。 主要任务:系统主要采用spring boot作为后端框架,前端使用vueelementUI,为408刷题小程序提供一个方面的管理和维护的任务,主要功能包括…

20240316-2-协同过滤(collaborative filtering)

协同过滤(collaborative filtering) 直观解释 协同过滤是推荐算法中最常用的算法之一,它根据user与item的交互,发现item之间的相关性,或者发现user之间的相关性,进行推荐。比如你有位朋友看电影的爱好跟你类似,然后最…

C#绘制面形图

创建windows窗体应用 ,从工具箱添加Button和Panel using System; using System.Collections.Generic; using System.ComponentModel; using System.Data; using System.Drawing; using System.Linq; using System.Text; using System.Threading.Tasks; using System.Windows.Fo…

array go 语言的数组 /切片

内存地址通过& package mainimport "fmt"func main() {var arr [2][3]int16fmt.Println(arr)fmt.Printf("arr的地址是: %p \n", &arr)fmt.Printf("arr[0]的地址是 %p \n", &arr[0])fmt.Printf("arr[0][0]的地址是 %p \n"…

Express:快速搭建Node.js应用的基石

🤍 前端开发工程师、技术日更博主、已过CET6 🍨 阿珊和她的猫_CSDN博客专家、23年度博客之星前端领域TOP1 🕠 牛客高级专题作者、打造专栏《前端面试必备》 、《2024面试高频手撕题》 🍚 蓝桥云课签约作者、上架课程《Vue.js 和 E…

Redis技术学习|实战项目记录|商户缓存

学习资料声明 黑马程序员的Redis学习视频:黑马程序员Redis入门到实战教程 需要用到的知识:linux(推荐韩顺平老师的教程,学到p30,创建好虚拟机和简单的几个命令就好。)SSM。SpringBoot。 还用到了MybatisPl…

mysql基础3索引

存储引擎 存储引擎就是存储数据、建立索引、更新/查询数据等技术的实现方式 。存储引擎是基于表的,而不是 基于库的,所以存储引擎也可被称为表类型。 1). 建表时指定存储引擎 CREATE TABLE 表名(字段1 字段1类型 [ COMMENT 字段1注释 ] ,......字段n…

nodejs+vue高校失物招领平台python-flask-django-php

时代在飞速进步,每个行业都在努力发展现在先进技术,通过这些先进的技术来提高自己的水平和优势,高校失物招领平台当然不能排除在外。高校失物招领平台是在实际应用和软件工程的开发原理之上,运用nodejs语言以及express框架进行开发…