目标检测中的mAP计算原理和源码实现

简介

在目标检测任务中,mAP(mean Average Precision,平均精度均值)是一个非常重要的评价指标,用于衡量模型在多个类别上的平均性能。它综合考虑了模型在不同召回率下的精确率,能够全面反映模型在检测任务中的表现。
作用
综合性评估:mAP能够综合考虑模型在不同召回率下的精确率,避免了单一指标(如准确率或召回率)可能带来的片面性。
多类别比较:对于多类别的目标检测任务,mAP可以计算每个类别的AP,然后取平均值得到全局的mAP,从而方便比较模型在不同类别上的性能。
模型选择和调优:通过比较不同模型或不同参数设置下的mAP值,可以选择性能更优的模型或确定最佳的参数配置。
计算方法
计算每个类别的AP:
对于每个类别,首先根据模型输出的预测框和真实的标注框计算交并比(IOU)。
根据设定的IOU阈值(通常为0.5),将预测框分为真正例(TP)、假正例(FP)和假反例(FN)。
对于每个预测框,根据当前的TP和FP数量计算精确率(Precision)和召回率(Recall)。
绘制该类别的PR曲线,即Precision随Recall变化的曲线。
计算PR曲线下方的面积,得到该类别的AP值。这通常可以通过插值法实现,如11点插值法,即在Recall坐标轴上选择11个点(如0, 0.1, 0.2, …, 1),然后计算这些点对应的Precision的平均值作为AP的近似值。
计算全局的mAP:
对于所有类别,分别计算得到各自的AP值。
将所有类别的AP值取平均值,得到全局的mAP值。
需要注意的是,mAP的计算过程可能因使用的数据集和评估标准而有所不同。例如,COCO数据集和PASCAL VOC数据集在计算mAP时可能采用不同的IOU阈值或插值方法。因此,在实际应用中,需要根据具体的数据集和评估要求来确定mAP的计算方法。

实现过程

假定我的输入为3D的目标检测的pred_boxes和gt_boxes

image_idx cls_id x y z l w h yaw score(for pred_boxes)
pred_boxes = py.array([[0, 1, 13, 13, 0, 6, 6, 2, 0, 0.9],
[0, 0, 35, 30, 0, 10, 8, 2, 0, 0.9],
[1, 0, 12, 30, 0, 6, 9, 2, 0, 0.5]])
gt_boxes = py.array([[0, 1, 10, 10, 0, 6, 6, 2, 0],
[0, 0, 30, 30, 0, 10, 8, 2, 0],
[0, 0, 10, 30, 0, 6, 9, 2, 0]])

可视化一下image_idx=0的boxes:
在这里插入图片描述
在每个类别中提取每个样本的这个类别的pred_boxes和gt_boxes,并计算iou值,根据iou阈值划分tp(正确检测)和fp(误检).

over_laps = iou(pred_boxes=pred_boxes_cls_img[:, [2, 3, 5, 6]],gt_boxes=gt_boxes_cls_img[:, [2, 3, 5, 6]])
corr_gts = np.argmax(over_laps, axis=1)
corr_iou = np.max(over_laps, axis=1)
visited_gt = []
for id, pred_box in enumerate(pred_boxes_cls_img):if corr_iou[id] >= iou_threshold and corr_gts[id] not in visited_gt:visited_gt.append(corr_gts[id])  # if pred got gt, the gt should be ignorefp_or_tp.append(1)else:fp_or_tp.append(0)

统计所有样本的pred_boxes的tp/fp类型及其score,安照score降序排序.

scores = pred_boxes_cls[:, -1]
index = np.argsort(-scores, )
# sort fp_or_tp by decending order of scores
fp_or_tp = fp_or_tp[index]

根据score列表依次选择有效的pred_boxes,计算precision=tp/(tp+fp)和recall=tp/gt_boxes.size().
precision和recall列表形成pr曲线,计算pr曲线面积即可.

# 根据>=score的是有效pred,有效pred中,0是f,1是检测到了目标, 1的数量除以总的有效pred就precious
# 1的数量除以真值数量就是recall
tp_num_list = np.cumsum(fp_or_tp)
pred_num_list = np.cumsum(np.ones_like(fp_or_tp))
precision_array = tp_num_list / pred_num_list
recall_array = tp_num_list / tp_and_tn
ap = compute_ap(recall_array, precision_array, class_name)

注意求pr曲线面积时,横坐标(长)要是recall,而不能是用score求平均precision.

思考下:
pr曲线会不会出现左低右高的情况?是有的,当fp的score较高时候就会出现这个问题.比如score最高的第一个就是fp.那么这时recall很小时,precision为0.
解决方法:recall_list和precision_list的首尾补上(0,1)或者(1,0),然后单调性处理
在这里插入图片描述

再分析下:score降序,recall肯定是递增的,但是precision不一定是递减,因此需要使得它单调,具体操作:

    for i in range(len(precision_array)-1, 0,-1):precision_array[i-1] = np.max(precision_array[i-1], precision_array[i])

参考:b站视频

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/564720.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Apache HTTP服务器(Linux离线编译安装)

Apache HTTP服务器(Linux离线编译安装) Apache是普通服务器,本身只支持html即普通网页。可以通过插件支持PHP,还可以与Tomcat连通(单向Apache连接Tomcat,就是说通过Apache可以访问Tomcat资源。反之不然)。 Apache和Tomcat都可以做为独立的w…

nodejs+vue高校师资管理系统python-flask-django-php

快速发展的社会中,人们的生活水平都在提高,生活节奏也在逐渐加快。为了节省时间和提高工作效率,越来越多的人选择利用互联网进行线上打理各种事务,然后线上管理系统也就相继涌现。与此同时,人们开始接受方便的生活方式…

python第三方库的安装,卸载和更新,以及在cmd下pip install安装的包在pycharm不可用问题的解决

目录 第三方库pip安装,卸载更新 1.安装: 2.卸载 3.更新 一、第三方库pip安装,卸载更新 1.安装 pip install 模块名 加镜像下载:pip install -i 镜像网址模块名 常用的是加清华镜像,如 pip install -i https://pyp…

Redis中RDB中的文件写入

RDB文件的创建与载入。 有两个Redis命令可以用于生成RDB文件,一个是SAVE,另一个是BGSAVE. SAVE命令会阻塞Redis服务器进程,直到RDB文件创建完毕为止,在服务器进程阻塞期间,服务器 不能处理任何命令请求: 127.0.0.1:6…

6.3 BP神经网络

在多层感知器被引入的同时,也引入了一个新的问题:由于隐藏层的预期输出并没有在训练样例中给出,隐藏层结点的误差无法像单层感知器那样直接计算得到。 为了解决这个问题,反向传播(BP)算法被引入&#xff0…

Python Flask 自定义404错误

from flask import Flask, abort, make_response, request, render_templateapp Flask(__name__)# 重定向到百度 app.route(/index, methods["GET", "POST"]) def index():if request.method "GET":return render_template("index.html&q…

阿里云倚天服务器全解析_倚天710处理器_基于新一代CIPU架构

阿里云倚天云服务器CPU采用倚天710处理器,租用倚天服务器c8y、g8y和r8y可以享受优惠价格,阿里云服务器网aliyunfuwuqi.com整理倚天云服务器详细介绍、倚天710处理器性能测评、CIPU架构优势、倚天服务器使用场景及生态支持: 阿里云倚天云服务…

c#矩阵求逆

目录 一、矩阵求逆的数学方法 1、伴随矩阵法 2、初等变换法 3、分块矩阵法 4、定义法 二、矩阵求逆C#代码 1、伴随矩阵法求指定3*3阶数矩阵的逆矩阵 (1)伴随矩阵数学方法 (2)代码 (3)计算 2、对…

SpringCloud-记

目录 什么是SpringCloud 什么是微服务 SpringCloud的优缺点 SpringBoot和SpringCloud的区别 RPC 的实现原理 RPC是什么 eureka的自我保护机制 Ribbon feigin优点 Ribbon和Feign的区别 什么是SpringCloud Spring Cloud是一系列框架的有序集合。它利用Spring Boot的开发…

设计模式之状态模式(一)

设计模式专栏: http://t.csdnimg.cn/4Mt4u 目录 1.概述 2.结构 3.实现 4.总结 1.概述 状态模式( State Pattern)也称为状态机模式( State Machine pattern), 是允许对象在内部状态发生改变时改变它的行为,对象看起来好像修改了它的类, 属于行为型模式。 在状…

竞赛 python opencv 深度学习 指纹识别算法实现

1 前言 🔥 优质竞赛项目系列,今天要分享的是 🚩 python opencv 深度学习 指纹识别算法实现 🥇学长这里给一个题目综合评分(每项满分5分) 难度系数:3分工作量:4分创新点:4分 该项目较为新颖…

Docker(二):Docker常用命令

docker 查看docker支持的所有命令和参数。 ➜ ~ docker Management Commands:config Manage Docker configscontainer Manage containersimage Manage imagesnetwork Manage networksnode Manage Swarm nodesplugin Manage pluginssecret …