【Paper Reading】CenterNet:Keypoint Triplets for Object Detection

背景

首先是借鉴Corner Net 表述了一下基于Anchor方法的不足:

  1. anchor的大小/比例需要人工来确认
  2. anchor并没有完全和gt的bbox对齐,不利于分类任务。

但是CornerNet也有自己的缺点

  1. CornerNet 只预测了top-left和bottom-right 两个点,并没有关注整体的信息,因此缺少一些全局的信息
  2. 上述的点导致它对边界过于敏感,经常会预测一些错误的bbox。

为了解决该问题,作者提出了Triplet的关键点预测。他follow了top-left和bottom-right的预测,此外增加了中心点的预测。
具体来说,为了使得中心点的预测更加准确,作者提出了Center Pooling的层用来在水平和垂直两个维度进行特征的聚合。使得每个位置的点都可以尽可能的感知到全局的信息。
此外,作者还提出了cascade corner pooling layer来取代原有的corner pooling layer。

作者也从指标的角度量化了上面提到的CornerNet比较容易出现False Positive的情况,如下图所示。作者展示了在不同IoU阈值下 False Discovery Rate。注意这里为什么没有用mAP,mAP是否有缺点?

  1. 框的增加,在recall不变的情况下,precision的下降不会导致mAP的下降。=>因此需要关注PR曲线的分数
  2. mAP是分类别计算的,每个类别都是按照分数排序来计算的,说明每个类别的分数阈值可能会不同,不能用同一个阈值在适应不同的类别。
    False Detection

方法

CenterNet的网络结构如下图所示
CenterNet Architecture
整个网络的推理流程如下所示:

  1. 选择top-k个中心点根据他们的分数
  2. 根据对应的offset将其还原到对应的输入图像中
  3. 根据tl-br构成的bbox,判断每个bbox内部的中心区域是否包括上述的中心点。
    3.1 N个tl的点和N个br 的点,组合形成N*N个bbox
    3.2 如果tl和br的embedding相似度小于阈值,则将对应的bbox剔除,否则保留。
  4. 如果中心点在bbox中,则用三者分数(tl、br和center)的平均来表示bbox的置信度。

那么这里涉及到一个问题,那就是如何计算每个bbox的中心区域。作者这里认为大的bbox应该使用小的中心区域,避免precision过低。小的bbox应该使用大的中心区域,避免recall过低。因此这里作者提出了scale-aware的中心区域计算方法,详情如下所示,其中针对大物体,n选择5,针对小物体,n选择3。
central region
在这里插入图片描述
上述介绍了推理的整体流程,那么我们在从内部逐步解析一下关键的结构,我们分别从center pooling、cascade corner pooling和loss来进行介绍。

center pooling

center pooling的示意图如下图所示。具体来说就是针对每个位置,我们计算其水平和垂直方向的max response,然后想加得到该位置的表征,我们认为这样的表征是包括了全局信息。简化版本的计算如下所示,其中 f , f 3 ∈ R H × W × C f,f_3 \in R^{H \times W \times C} f,f3RH×W×C

f1 = np.max(f, axis=0)
f2 = np.max(f, axis=1)
f3 = f1[None, :, :] + f2[:, None, :]

center pooling

cascaded corner pooling

示意图如下所示
在这里插入图片描述

loss

损失函数的定义如下所示。整体上分为三大部分。

  • L d e t c o 、 L d e t c e L_{det}^{co}、L_{det}^{ce} LdetcoLdetce表示的corner 和 center两个heatmap组成的loss,这里采用的是focal loss。

  • L p u l l c o 、 L p u s h c o L_{pull}^{co}、L_{push}^{co} LpullcoLpushco是让属于同一个物体的corner embedding尽可能相似,属于不同物体的embedding尽可能远离。

  • L o f f c o 、 L o f f c e L_{off}^{co}、L_{off}^{ce} LoffcoLoffce 表示预测corner 和 center在原图上的offset,这里采用的是l1-loss。
    loss function

  • QA1:GT是如何计算的?

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/56492.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

vscode 第一个文件夹在上一层文件夹同行,怎么处理

我的是这样的 打开终端特别麻烦 解决方法就是 打开vscode里边的首选项 进入设置 把Compact Folders下边对勾给勾掉

CCF-CSP 29次 第三题【202303-3 LDAP】(多个STL+递归)

计算机软件能力认证考试系统 #include <iostream> #include <cstring> #include <algorithm> #include <vector> #include <unordered_map> #include <string>using namespace std;typedef long long LL;const int N 2510, M 510;int n…

【web逆向】全报文加密及其登录流程的分析案例

aHR0cHM6Ly9oZWFsdGguZWxkZXIuY2NiLmNvbS9zaWduX2luLw 涉及加密库jsencrypt 定位加密点 先看加密的请求和响应&#xff1a; 全局搜索加密字段jsondata&#xff0c;这种非特定参数的一般一搜一个准&#xff0c;搜到就是断点。起初下的断点没停住&#xff0c;转而从调用栈单步…

概念解析 | 生成式与判别式模型在低级图像恢复与点云重建中的角力:一场较量与可能性探索

注1:本文系“概念解析”系列之一,致力于简洁清晰地解释、辨析复杂而专业的概念。本次辨析的概念是:生成式模型与判别式模型在低级图像恢复/点云重建任务中的优劣与特性。 生成式与判别式模型在低级图像恢复与点云重建中的角力:一场较量与可能性探索 1. 背景介绍 机器学习…

【小吉带你学Git】idea操作(2)_版本和分支的相关操作

&#x1f38a;专栏【Git】 &#x1f354;喜欢的诗句&#xff1a;更喜岷山千里雪 三军过后尽开颜。 &#x1f386;音乐分享【Counting Stars 】 欢迎并且感谢大家指出小吉的问题&#x1f970; 文章目录 &#x1f354;版本⭐首先创建一个项目⭐添加暂存区⭐提交本地库&#x1f33…

链表OJ题

题目一&#xff1a;206反转链表 题目要求&#xff1a; 思路分析&#xff1a; 代码实现&#xff1a; struct ListNode* reverseList(struct ListNode* head){ //n1,n2反转指针 n3链接下一个结点的指针struct ListNode* n1,*n2,*n3;n1 NULL;n2 head;if(n2)//有可能head本身…

gin和gorm框架安装

理论上只要这两句命令 go get -u gorm.io/gorm go get -u github.com/gin-gonic/gin然而却出现了问题 貌似是代理问题&#xff0c;加上一条命令 go env -w GOPROXYhttps://goproxy.cn,direct 可以成功安装 安装gorm的数据库驱动程序 go get -u gorm.io/driver/mysql

按轨迹运行

文章目录 import math import timeimport numpy as np import matplotlib.pyplot as pltdef plot_arrow(x, y, yaw, length=5, width=1):dx = length * math.cos(yaw)dy = length * math.sin(yaw)plt.arrow(x, y, dx, dy, head_length=width, head_width=width)plt.plot([x, x …

Mybatis-plus动态条件查询QueryWrapper的使用

Mybatis-plus动态条件查询QueryWrapper的使用 一&#xff1a;queryWrapper介绍 queryWrapper是mybatis plus中实现查询的对象封装操作类&#xff0c;可以封装sql对象&#xff0c;包括where条件&#xff0c;order by排序&#xff0c;select哪些字段等等&#xff0c;他的层级关…

任务14、无缝衔接,MidJourney瓷砖(Tile)参数制作精良贴图

14.1 任务概述 在这个实验任务中,我们将深入探索《Midjourney Ai绘画》中的Tile技术和其在艺术创作中的具有挑战性的应用。此任务将通过理论学习与实践操作相结合的方式,让参与者更好地理解Tile的核心概念,熟练掌握如何在Midjourney平台上使用Tile参数,并实际运用到AI绘画…

spring — Spring Security 5.7与6.0差异性对比

1. spring security Spring Security 是一个提供身份验证、授权和针对常见攻击保护的框架。 凭借对保护命令式和反应式应用程序的一流支持&#xff0c;它成为基于Spring的标准安全框架。 Spring Security 在最近几个版本中配置的写法都有一些变化&#xff0c;很多常见的方法都…

Intellij IDEA运行报Command line is too long的解决办法

想哭&#xff0c;vue前端运行起来&#xff0c;对应的后端也得起服务。 后端出的这个bug&#xff0c;下面的博客写的第二种方法&#xff0c;完整截图是下面这个。 ​​​​​​​​​​​​​​​​​​​​Intellij IDEA运行报Command line is too long的解决办法 - 知乎 (zh…