机器学习基础——模型评估与选择(部分)

        为了实现对模型指导,实现自主建模,我们会对模型进行选择和评估,主要有以下几个问题:

一、前言:误差与拟合

(一)经验误差

        使用上述流程理解,其中 a 为预测错误的个数,m为使用的样本数量,则有以下概念:

  • 错误率(error rate):分类错误的样本数占样本总数的比例。即在 m 个样本中有 a 个样本分类错误,则错误率E = a / m
  • 精度(accuracy):精度=1 - a / m ,即 精度 = 1 - 错误率
  • 误差(error):学习器的预测输出与样本之间的差异。其中:学习器在训练集上的误差称为“训练误差(training error)”或“经验误差(empirical error)”,在新样本上的误差称为“泛化误差(generalization error)”。

(二)过拟合、欠拟合

        对于机器学习而言,泛化误差越小越好,但经验误差不一定越小越好,因为会出现“过拟合”问题,西瓜书中就有这样一个例子:

过拟合(overfitting):学习器在训练样本中表现得过于优越,导致在验证数据集以及测试数据集中表现不佳。

可能原因:

  1. 建模样本选取影响,如样本数量太少,选样方法错误,样本标签错误等,导致选取的样本数据不足以代表预定的分类规则;
  2. 样本噪音(无关影响因素)干扰,使得机器将部分噪音认为是特征从而扰乱了预设的分类规则;
  3. 参数太多,模型复杂度过高;

欠拟合(underfitting):可能由于模型过于简单或特征量过少等原因,相对于过拟合,学习器对训练样本的一般性质尚未学好,不能很好地捕捉到数据特征。

二、评估方法

(一)评估总体的思路

        在学习过程中,应尽量减少欠拟合或过拟合对模型的影响,选择泛化误差最小的模型。

        泛化误差是无法直接获得的,因此会将数据分为训练集(training set)和测试集(testing set),训练集用于投喂给模型进行学习,而测试集用来“测试”所得到的模型对新样本的泛化能力,然后,以测试集上的“测试误差”(testing error)作为泛化误差的近似。

  • 评估方法的关键在于:怎么获得“测试集” (test set) 
  • 此外可能有些地方会有“验证集”(validation set),验证集的存在一般是为了调节参数

(二)如何划分训练集和测试集

1.留出法

        将训练集和测试集简单地37分或28分

        注意事项:

  • 测试集和训练集在总体中独立同分布,如使用分层采样的方式进行数据划分
  • 测试集应该尽可能与训练集互斥
  • 通常进行若干次随机划分、重复实验评估取平均值最为评估结果
  • 测试集数量不能极端,太大或太小都不合适  ( 如: 1/5~1/3 如此划分)

        代码实现:

        如对于一个有监督学习,X 为原数据集(如顾客特征),y 为数据对应标签(是否购买某物品),可以使用 train_test_split() 函数进行数据集的划分:

# Splitting the dataset into the Training set and Test set
from sklearn.model_selection import train_test_split
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = 0.25, random_state = 0)

        函数详细用法参见:python机器学习 train_test_split()函数用法解析及示例 划分训练集和测试集 以鸢尾数据为例 入门级讲解-CSDN博客

2.k折交叉验证

        k折交叉验证即将原本数据集分成 k 分,每次取其中一块当测试集,每次的测试结果平均值作为标准

        这种方法可以通过 sklearn 中 model_selection 模块的 cross_val_score() 函数实现

        例:先生成一个名为 “classifier” 的SVN模型,进行交叉验证后以其均值作为模型精度方差作估计误差

# Fitting Kernel SVM to the Training set
from sklearn.svm import SVC
classifier = SVC(kernel = 'rbf', random_state = 0)
classifier.fit(X_train, y_train)####################################
# Applying k-Fold Cross Validation #
####################################
from sklearn.model_selection import cross_val_score#######################################################
# Split training set into 10 folds                    #
# 10折交叉验证,指定训练模型、数据集、数据标签、迭代次数  #
#######################################################
accuracies = cross_val_score(estimator = classifier, X = X_train, y = y_train, cv = 10)accuracies.mean() # Get mean as accuracy of model performance
accuracies.std() # Get standard deviation to evaluate variance

         亦有其他代码可实现,再此不多赘述

        补充关于留一法:

        直接将样本分成 m 分,每份一个样本,这样做不会受样本划分方式的影响,但在数据量大的情况下对算力有很高要求,结果也未必一定会更准确

3.自助法

        该方法通常用于样本量较小的情况,对于含有 m 个数据的样本进行放回抽样,在进行 m 次后,有 36.8% 的样本是不会被取到的,这由以下这个高数中的重要极限得出

         被取到的概率为 1/m,不被取到的概率为 1-1/m,进行 m 次抽取

注意事项:

  • 该方法在数据集较小且难以划分时使用
  • 会改变数据分布,引入误差

三、性能度量

        旨在评价模型的准确度,衡量其泛化能力,实际中什么样的模型是“好”的,不仅取决于算法和数据, 还取决于任务需求

(一)均方误差

        对于回归任务,最常用的是均方误差,公式如下:

(即:输出值减去实际值平方进行累加后取平均) 

        字母恐惧的伙伴也别急,这里有解释:

  • D:给定的样集D={(x1,y1),(x2,y2),...(xm,xm)},此处为实际的特征 x 和实际标签 y
  • m:样集中的样本个数
  • f:学习器/模型f
  • f(x):模型对于每个 x 输出的预测值
  • y:数据中每个 x 对应的实际标签

(二)错误率&精度

        这两个指标十分易于理解,也在文章开头就做了介绍,总言之就是模型预测正确的样本及错误样本的占比

(三)查准率&查全率

        又称准确率和召回率

        上面这个图叫作混淆矩阵,在实际应用中很有用,先知道几个概念

  • 真正例(True Positive):实际结果为positive,模型预测结果也为positive
  • 假正例(False Positive):实际结果为negative,模型预测结果却为positive
  • 假反例(False Negative):实际结果为positive,模型预测结果却为negative
  • 真反例(True Positive):实际结果为negative,模型预测结果也为negative

        这里的正反例,比如一个顾客购买了,可以说是正例,某疾病检测结果显示阴性(健康)也可以说是正例,真假则是反应的模型输出结果与实际结果是否一致

        此基础上有查准率与查全率公式:

        换成人话理解即:

  • 查准率=预测正确的的正例所有预测结果为正例的比例,即所有 f(x) 中的准确率,反应所有预测为正例中正确样本的占比,看查的准不准

        如模型预测100人购买,实际上只有75人购买,预测正确,则查准率为75%,有25%被错误地预测为购买

  • 查全率=预测正确的的正例所有实际为正例的比例,反应所有真实正例中被预测正确的占比,就是有没有把它们找出来,查的全不全

        如模型预测100位顾客购买,实际上有125人购买,则查全率80%,有20%被错误地预测为未购买

        由于FN与FP负相关,查准率和查全率是一对矛盾的度量,两者呈负相关趋势

(P-R图像) 

阈值-PR图像,阈值越小要求低,精确度则越低,找的越全,反之同样道理) 

        阈值可以大致理解为找出正例的那个标准,关于这两指标的意义文章健康检测的例子举的非常好,可参考【机器学习】模型评估与选择(理论)_提高阈值,查准率查全率-CSDN博客

补充:

平衡点(Break-Event Point,简称 BEP):

        是“查准率=查全率”时的取值。如右图中,学习器C的BEP是0.64,而基于BEP的比较,可认为学习器A优于B

模型性能比较:

        实际上P-R曲线可以用来比较多个模型的效果,如上图中模型B在任何情况下PR值均比模型C高,效果就比模型C好,那对于模型A和B的比较:

  • 比较AB面积
  • 根据平衡点进行比较
  • 使用指标F1及Fβ

(四)F1&Fβ

        由于P与R各有侧重,F1实际上是查全率P与查准率R的加权平均,

 则有:

         在一些应用中,对查准率和查全率的重视程度有所不同,会对两者进行加权调和平均计算

对于β:

  • 𝛽 > 0:度量了查全率对查准率的相对重要性
  • 𝛽 = 1:为标准的 𝐹1 
  • 𝛽 > 1 时查全率 R 有更大影响;𝛽 < 1 时查准率 P 有更大影响

        上述问题主要对于单个二分类问题,对于多分类问题,除了直接使用某些算法,也可以看成 n 个二分类问题(one vs one 或 one vs rest),多个二分类问题会产生多个P值、R值,若要衡量总体效果,可以:

(1.先计算再求平均)

(2.先平均再计算)

        法2即将多次分类得到的真正例真反例等等个数进行平均,再计算 F 值

(五)ROC&AUC

        受试者特征曲线 ROC 由以下两部分构成:

        TPR 真正利率,其实就是召回率FPR 假正例率就是反例被错误地分成正例的比率

        AUC 即 Area Under Curve,表示一条曲线下面的面积,ROC曲线的AUC值可以用来对模型进行评价。一个纯随机分类器 ROC 曲线下面积是等于 0.5的,可以以此判断一个模型效果如何

        同一模型真正例预测出来的越多,假正例自然也会越多,因为总体预测为正例的数量多了

        在有实际测试样例时,会得到如下图类似的图像

        曲线的绘制过程:假设m﹢个正例与m﹣个反例,在得分排序后,阈值最大时所有样例都为反例,即 (0,0),接下来就是移动坐标连线:

         每检测出一个真正例或假正例,则在对应轴上增加1/m﹢或1/m﹣,我们一般希望假正例率增加的越慢越好的

        关于代价损失、代价敏感错误率与代价曲线部分内容理解还不够深刻,待日后涉及到了再补更

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/568554.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

【Rust】——提取函数消除重复代码和泛型

&#x1f383;个人专栏&#xff1a; &#x1f42c; 算法设计与分析&#xff1a;算法设计与分析_IT闫的博客-CSDN博客 &#x1f433;Java基础&#xff1a;Java基础_IT闫的博客-CSDN博客 &#x1f40b;c语言&#xff1a;c语言_IT闫的博客-CSDN博客 &#x1f41f;MySQL&#xff1a…

工时表软件:项目管理的效率利器

在当今的项目管理实践中&#xff0c;时间是最宝贵的资产之一。精准地追踪和管理项目工时对于项目的成功至关重要。工时表软件作为一种现代管理工具&#xff0c;其应用不仅简化了项目管理流程&#xff0c;还提高了工作效率&#xff0c;已成为现代企业管理不可或缺的一项利器。 …

深入解析ECC(椭圆曲线密码学)加解密算法

码到三十五 &#xff1a; 个人主页 心中有诗画&#xff0c;指尖舞代码&#xff0c;目光览世界&#xff0c;步履越千山&#xff0c;人间尽值得 ! 本文将详细介绍ECC&#xff08;椭圆曲线密码学&#xff09;加解密算法的原理、特点及应用。ECC作为一种新型的公钥密码体制&#…

FL Studio21.2.3最新中文编曲音乐制作软件新版本功能介绍

一、前言 随着科技的发展&#xff0c;越来越多的人开始尝试自己创作音乐。然而&#xff0c;传统的音乐制作过程复杂繁琐&#xff0c;需要昂贵的硬件设备和专业的知识技能。那么&#xff0c;有没有一款软件可以让普通人也能轻松地制作出专业级别的音乐作品呢&#xff1f;答案就…

【优选算法】专题1 -- 双指针 -- 复写0

前言&#xff1a; 补充一下前文没有写到的双指针入门知识&#xff1a;专题1 -- 双指针 -- 移动零 目录 基础入门知识&#xff1a; 1. 复写零&#xff08;easy&#xff09; 1. 题⽬链接&#xff1a;1089.复习0 - 力扣&#xff08;LeetCode&#xff09; 2. 题⽬描述&#xff…

C++ primer 第十五章

1.OPP:概述 面向对象程序设计的核心思想是数据抽象、继承和动态绑定。 通过继承联系在一起的类构成一种层次关系&#xff0c;在层次关系的根部的是基类&#xff0c;基类下面的类是派生类 基类负责定义在层次关系中所有类共同拥有的成员&#xff0c;而每个派生类定义各自特有…

词曲创作只需几秒,「AI作曲家」Suno引爆音乐圈,第一手体验和攻略来了

ChatGPT狂飙160天&#xff0c;世界已经不是之前的样子。 新建了人工智能中文站https://ai.weoknow.com 每天给大家更新可用的国内可用chatGPT资源 发布在https://it.weoknow.com 更多资源欢迎关注 有了 Suno 这个「作曲助手」&#xff0c;人人都可以创建自己想听的歌曲。 自…

使用Appium进行移动应用UI自动化

1. 背景介绍 移动应用的发展与普及日益迅速&#xff0c;其中大部分应用程序需要进行UI自动化测试。Appium是一个开源的移动应用自动化框架&#xff0c;它支持Android、iOS等多种平台&#xff0c;可以用于自动化测试移动应用程序的UI。本文将介绍如何使用Appium进行移动应用UI自…

Landsat 8 Landsat8 Collection2大气层顶反射率数据

简介 Landsat8 TOA数据集是将数据每个波段的辐射亮度值转换为大气层顶表观反射率TOA&#xff0c;是飞行在大气层之外的航天传感器量测的反射率&#xff0c;包括了云层、气溶胶和气体的贡献&#xff0c;可通过辐射亮度定标参数、太阳辐照度、太阳高度角和成像时间等几个参数计算…

C++函数模板详解(结合代码)

目录 1. 模板概念 2. 函数模板语法 3. 函数模板注意事项 4. 函数模板案例 5. 普通函数与函数模板的区别 6. 普通函数与函数模板的调用规则 7. 模板的局限性 1. 模板概念 在C中&#xff0c;模板是一种通用的程序设计工具&#xff0c;它允许我们处理多种数据类型而不是固…

Python时间

UTC ~ 北京时间 【差8小时】 格式化日期时间为字符串:strftime 时间戳-1970.1.1到现在的秒数:time.time() AttributeError: partially initialized module ‘datetime’ has no attribute ‘fromtimestamp’ (most likely due to a circular import) 改正&#xff1a;文件名和…

vue学习日记18:data是一个函数组件通信

一、data是一个函数 1.概念 2.代码 相互独立互不影响 二、组件通信 1.概念 &#xff08;1&#xff09;什么是组件通信 &#xff08;2&#xff09;不同组件关系和组件通信方案分类 &#xff08;3&#xff09;组件通信解决方案 &#xff08;4&#xff09;父子通信流程图 -…