线程安全集合类原理

一、ConcurrentHashMap

(一)、HashMap

1、JDK7 并发死链

采用头插法

扩容源码(扩容时并没有创建新的节点,只是将引用挂在不同的地方)

void transfer(Entry[] newTable, boolean rehash) {int newCapacity = newTable.length;for (Entry<K,V> e : table) {while(null != e) {Entry<K,V> next = e.next;// 1 处if (rehash) {e.hash = null == e.key ? 0 : hash(e.key);}int i = indexFor(e.hash, newCapacity);// 2 处// 将新元素加入 newTable[i], 原 newTable[i] 作为新元素的 nexte.next = newTable[i];newTable[i] = e;e = next;}}
}

Thread-1,Thread-0两个线程对HashMap进行操作,此时长度为16,已经存放12个数据

假设在原始map的 桶1中有链表  A->B->C->null

现在0,1线程同时加入一个新的元素,开始扩容

根据源码此时0,1线程的   e(节点A):   A->B->C->null

                                        next(节点B):  B->C->null

此时,Thread-0先扩容完成   此时 桶1 处的链表为 B->A->null(头插法,倒序,扩容后c在别的桶)

此时Thread-1开始扩容  其  e(节点A): A->null 

                                       next(节点B):  B->A->null

此时,将A插入桶1  桶1处  :   A->null

此时 e(节点B) : B->A->null

       next(节点A):  A->null

插入e(节点B)  桶1:B->A->null

                  e(节点A) : A->null

                  next(null):  null

此时,将e(节点1)插入 桶1: A->B->A  (产生循环)

(二)、ConcurrentHashMap重要属性和内部类、方法

// 默认为 0
// 当初始化时, 为 -1
// 当扩容时, 为 -(1 + 扩容线程数)
// 当初始化或扩容完成后,为 下一次的扩容的阈值大小
private transient volatile int sizeCtl;
// 整个 ConcurrentHashMap 就是一个 Node[]
static class Node<K,V> implements Map.Entry<K,V> {}
// hash 表
transient volatile Node<K,V>[] table;
// 扩容时的 新 hash 表
private transient volatile Node<K,V>[] nextTable;
// 扩容时如果某个 bin 迁移完毕, 用 ForwardingNode 作为旧 table bin 的头结点
static final class ForwardingNode<K,V> extends Node<K,V> {}
// 用在 compute 以及 computeIfAbsent 时, 用来占位, 计算完成后替换为普通 Node
static final class ReservationNode<K,V> extends Node<K,V> {}
// 作为 treebin 的头节点, 存储 root 和 first
static final class TreeBin<K,V> extends Node<K,V> {}
// 作为 treebin 的节点, 存储 parent, left, right
static final class TreeNode<K,V> extends Node<K,V> {}
// 获取 Node[] 中第 i 个 Node
static final <K,V> Node<K,V> tabAt(Node<K,V>[] tab, int i)// cas 修改 Node[] 中第 i 个 Node 的值, c 为旧值, v 为新值
static final <K,V> boolean casTabAt(Node<K,V>[] tab, int i, Node<K,V> c, Node<K,V> v)// 直接修改 Node[] 中第 i 个 Node 的值, v 为新值
static final <K,V> void setTabAt(Node<K,V>[] tab, int i, Node<K,V> v)

(三)、构造器

public ConcurrentHashMap(int initialCapacity,   //初始容量float loadFactor,      //扩容阈值(默认3/4)int concurrencyLevel) {  //并发度if (!(loadFactor > 0.0f) || initialCapacity < 0 || concurrencyLevel <= 0)throw new IllegalArgumentException();if (initialCapacity < concurrencyLevel) // Use at least as many binsinitialCapacity = concurrencyLevel; // as estimated threads //初始容量要>=并发度long size = (long)(1.0 + (long)initialCapacity / loadFactor);// tableSizeFor 仍然是保证计算的大小是 2^n, 即 16,32,64 ... int cap = (size >= (long)MAXIMUM_CAPACITY) ?MAXIMUM_CAPACITY : tableSizeFor((int)size);this.sizeCtl = cap;
}

(三)、get流程

public V get(Object key) {Node<K,V>[] tab; Node<K,V> e, p; int n, eh; K ek;// spread 方法能确保返回结果是正数int h = spread(key.hashCode());if ((tab = table) != null && (n = tab.length) > 0 &&(e = tabAt(tab, (n - 1) & h)) != null) {// 如果头结点已经是要查找的 keyif ((eh = e.hash) == h) {if ((ek = e.key) == key || (ek != null && key.equals(ek)))return e.val;}// hash 为负数表示该 bin 在扩容中或是 treebin, 这时调用 find 方法来查找else if (eh < 0)return (p = e.find(h, key)) != null ? p.val : null;// 正常遍历链表, 用 equals 比较while ((e = e.next) != null) {if (e.hash == h &&((ek = e.key) == key || (ek != null && key.equals(ek))))return e.val;}}return null;
}

(四)、put流程

public V put(K key, V value) {return putVal(key, value, false);
}final V putVal(K key, V value, boolean onlyIfAbsent) {if (key == null || value == null) throw new NullPointerException();// 其中 spread 方法会综合高位低位, 具有更好的 hash 性int hash = spread(key.hashCode());int binCount = 0;for (Node<K, V>[] tab = table; ; ) {// f 是链表头节点// fh 是链表头结点的 hash// i 是链表在 table 中的下标Node<K, V> f;int n, i, fh;// 要创建 tableif (tab == null || (n = tab.length) == 0)// 初始化 table 使用了 cas, 无需 synchronized 创建成功, 进入下一轮循环tab = initTable();// 要创建链表头节点else if ((f = tabAt(tab, i = (n - 1) & hash)) == null) {// 添加链表头使用了 cas, 无需 synchronizedif (casTabAt(tab, i, null,new Node<K, V>(hash, key, value, null)))break;}// 帮忙扩容else if ((fh = f.hash) == MOVED)// 帮忙之后, 进入下一轮循环tab = helpTransfer(tab, f);else {V oldVal = null;// 锁住链表头节点synchronized (f) {// 再次确认链表头节点没有被移动if (tabAt(tab, i) == f) {// 链表if (fh >= 0) {binCount = 1;// 遍历链表for (Node<K, V> e = f; ; ++binCount) {K ek;// 找到相同的 keyif (e.hash == hash &&((ek = e.key) == key ||(ek != null && key.equals(ek)))) {oldVal = e.val;// 更新if (!onlyIfAbsent)e.val = value;break;}Node<K, V> pred = e;// 已经是最后的节点了, 新增 Node, 追加至链表尾if ((e = e.next) == null) {pred.next = new Node<K, V>(hash, key,value, null);break;}}}// 红黑树else if (f instanceof TreeBin) {Node<K, V> p;binCount = 2;// putTreeVal 会看 key 是否已经在树中, 是, 则返回对应的 TreeNodeif ((p = ((TreeBin<K, V>) f).putTreeVal(hash, key,value)) != null) {oldVal = p.val;if (!onlyIfAbsent)p.val = value;}}}// 释放链表头节点的锁}if (binCount != 0) {if (binCount >= TREEIFY_THRESHOLD)// 如果链表长度 >= 树化阈值(8), 进行链表转为红黑树treeifyBin(tab, i);if (oldVal != null)return oldVal;break;}}}// 增加 size 计数addCount(1L, binCount);return null;
}private final Node<K, V>[] initTable() {Node<K, V>[] tab;int sc;while ((tab = table) == null || tab.length == 0) {if ((sc = sizeCtl) < 0)Thread.yield();// 尝试将 sizeCtl 设置为 -1(表示初始化 table)else if (U.compareAndSwapInt(this, SIZECTL, sc, -1)) {// 获得锁, 创建 table, 这时其它线程会在 while() 循环中 yield 直至 table 创建try {if ((tab = table) == null || tab.length == 0) {int n = (sc > 0) ? sc : DEFAULT_CAPACITY;Node<K, V>[] nt = (Node<K, V>[]) new Node<?, ?>[n];table = tab = nt;sc = n - (n >>> 2);}} finally {sizeCtl = sc;}break;}}return tab;
}// check 是之前 binCount 的个数
private final void addCount(long x, int check) {CounterCell[] as;long b, s;if (// 已经有了 counterCells, 向 cell 累加(as = counterCells) != null ||// 还没有, 向 baseCount 累加!U.compareAndSwapLong(this, BASECOUNT, b = baseCount, s = b + x)) {CounterCell a;long v;int m;boolean uncontended = true;if (// 还没有 counterCellsas == null || (m = as.length - 1) < 0 ||// 还没有 cell(a = as[ThreadLocalRandom.getProbe() & m]) == null ||// cell cas 增加计数失败!(uncontended = U.compareAndSwapLong(a, CELLVALUE, v = a.value, v + x))) {// 创建累加单元数组和cell, 累加重试fullAddCount(x, uncontended);return;}if (check <= 1)return;// 获取元素个数s = sumCount();}if (check >= 0) {Node<K, V>[] tab, nt;int n, sc;while (s >= (long) (sc = sizeCtl) && (tab = table) != null &&(n = tab.length) < MAXIMUM_CAPACITY) {int rs = resizeStamp(n);if (sc < 0) {if ((sc >>> RESIZE_STAMP_SHIFT) != rs || sc == rs + 1 ||sc == rs + MAX_RESIZERS || (nt = nextTable) == null ||transferIndex <= 0)break;// newtable 已经创建了,帮忙扩容if (U.compareAndSwapInt(this, SIZECTL, sc, sc + 1))transfer(tab, nt);}// 需要扩容,这时 newtable 未创建else if (U.compareAndSwapInt(this, SIZECTL, sc,(rs << RESIZE_STAMP_SHIFT) + 2))transfer(tab, null);s = sumCount();}}
}

(五)、size流程

由于是多个线程对其进行操作,所以size 的计算不一定是一个精确值

(六)、总结

(七)、JDK7中的ConcurrentHashMap

它维护了一个 segment 数组,每个 segment 对应一把锁
  • 优点:如果多个线程访问不同的 segment,实际是没有冲突的,这与 jdk8 中是类似的
  • 缺点:Segments 数组默认大小为16,这个容量初始化指定后就不能改变了,并且不是懒惰初始化

1、构造器

public ConcurrentHashMap(int initialCapacity, float loadFactor, int concurrencyLevel) {if (!(loadFactor > 0) || initialCapacity < 0 || concurrencyLevel <= 0)throw new IllegalArgumentException();if (concurrencyLevel > MAX_SEGMENTS)concurrencyLevel = MAX_SEGMENTS;// ssize 必须是 2^n, 即 2, 4, 8, 16 ... 表示了 segments 数组的大小int sshift = 0;int ssize = 1;while (ssize < concurrencyLevel) {++sshift;ssize <<= 1;}// segmentShift 默认是 32 - 4 = 28this.segmentShift = 32 - sshift;// segmentMask 默认是 15 即 0000 0000 0000 1111this.segmentMask = ssize - 1;if (initialCapacity > MAXIMUM_CAPACITY)initialCapacity = MAXIMUM_CAPACITY;int c = initialCapacity / ssize;if (c * ssize < initialCapacity)++c;int cap = MIN_SEGMENT_TABLE_CAPACITY;while (cap < c)cap <<= 1;// 创建 segments and segments[0]Segment<K,V> s0 =new Segment<K,V>(loadFactor, (int)(cap * loadFactor),(HashEntry<K,V>[])new HashEntry[cap]);Segment<K,V>[] ss = (Segment<K,V>[])new Segment[ssize];UNSAFE.putOrderedObject(ss, SBASE, s0); // ordered write of segments[0]this.segments = ss;
}

2、put流程

public V put(K key, V value) {Segment<K,V> s;if (value == null)throw new NullPointerException();int hash = hash(key);// 计算出 segment 下标int j = (hash >>> segmentShift) & segmentMask;// 获得 segment 对象, 判断是否为 null, 是则创建该 segmentif ((s = (Segment<K,V>)UNSAFE.getObject(segments, (j << SSHIFT) + SBASE)) == null) {// 这时不能确定是否真的为 null, 因为其它线程也发现该 segment 为 null,// 因此在 ensureSegment 里用 cas 方式保证该 segment 安全性s = ensureSegment(j);}// 进入 segment 的put 流程return s.put(key, hash, value, false);
}

segment 继承了可重入锁(ReentrantLock),它的 put 方法为

final V put(K key, int hash, V value, boolean onlyIfAbsent) {// 尝试加锁HashEntry<K, V> node = tryLock() ? null :// 如果不成功, 进入 scanAndLockForPut 流程// 如果是多核 cpu 最多 tryLock 64 次, 进入 lock 流程// 在尝试期间, 还可以顺便看该节点在链表中有没有, 如果没有顺便创建出来scanAndLockForPut(key, hash, value);// 执行到这里 segment 已经被成功加锁, 可以安全执行V oldValue;try {HashEntry<K, V>[] tab = table;int index = (tab.length - 1) & hash;HashEntry<K, V> first = entryAt(tab, index);for (HashEntry<K, V> e = first; ; ) {if (e != null) {// 更新K k;if ((k = e.key) == key ||(e.hash == hash && key.equals(k))) {oldValue = e.value;if (!onlyIfAbsent) {e.value = value;++modCount;}break;}e = e.next;} else {// 新增// 1) 之前等待锁时, node 已经被创建, next 指向链表头if (node != null)node.setNext(first);else// 2) 创建新 nodenode = new HashEntry<K, V>(hash, key, value, first);int c = count + 1;// 3) 扩容if (c > threshold && tab.length < MAXIMUM_CAPACITY)rehash(node);else// 将 node 作为链表头setEntryAt(tab, index, node);++modCount;count = c;oldValue = null;break;}}} finally {unlock();}return oldValue;
}

3、扩容流程

发生在 put 中,因为此时已经获得了锁,因此 rehash 时不需要考虑线程安全 (先扩容,再插入新值)
private void rehash(HashEntry<K, V> node) {HashEntry<K, V>[] oldTable = table;int oldCapacity = oldTable.length;int newCapacity = oldCapacity << 1;threshold = (int) (newCapacity * loadFactor);HashEntry<K, V>[] newTable =(HashEntry<K, V>[]) new HashEntry[newCapacity];int sizeMask = newCapacity - 1;for (int i = 0; i < oldCapacity; i++) {HashEntry<K, V> e = oldTable[i];if (e != null) {HashEntry<K, V> next = e.next;int idx = e.hash & sizeMask;if (next == null) // Single node on listnewTable[idx] = e;else { // Reuse consecutive sequence at same slotHashEntry<K, V> lastRun = e;int lastIdx = idx;// 过一遍链表, 尽可能把 rehash 后 idx 不变的节点重用for (HashEntry<K, V> last = next;last != null;last = last.next) {int k = last.hash & sizeMask;if (k != lastIdx) {lastIdx = k;lastRun = last;}}newTable[lastIdx] = lastRun;// 剩余节点需要新建for (HashEntry<K, V> p = e; p != lastRun; p = p.next) {V v = p.value;int h = p.hash;int k = h & sizeMask;HashEntry<K, V> n = newTable[k];newTable[k] = new HashEntry<K, V>(h, p.key, v, n);}}}}// 扩容完成, 才加入新的节点int nodeIndex = node.hash & sizeMask; // add the new nodenode.setNext(newTable[nodeIndex]);newTable[nodeIndex] = node;// 替换为新的 HashEntry tabletable = newTable;
}

3、get流程

get 时并未加锁,用了 UNSAFE 方法保证了可见性,扩容过程中, get 先发生就从旧表取内容, get 后发生就从新表取内容
public V get(Object key) {Segment<K,V> s; // manually integrate access methods to reduce overheadHashEntry<K,V>[] tab;int h = hash(key);// u 为 segment 对象在数组中的偏移量long u = (((h >>> segmentShift) & segmentMask) << SSHIFT) + SBASE;// s 即为 segmentif ((s = (Segment<K,V>)UNSAFE.getObjectVolatile(segments, u)) != null &&(tab = s.table) != null) {for (HashEntry<K,V> e = (HashEntry<K,V>) UNSAFE.getObjectVolatile(tab, ((long)(((tab.length - 1) & h)) << TSHIFT) + TBASE);e != null; e = e.next) {K k;if ((k = e.key) == key || (e.hash == h && key.equals(k)))return e.value;}}return null;
}

二、LinkedBlockingQueue 原理

(一)、基本的入队出队

public class LinkedBlockingQueue<E> extends AbstractQueue<E>implements BlockingQueue<E>, java.io.Serializable {static class Node<E> {E item;/*** 下列三种情况之一* - 真正的后继节点* - 自己, 发生在出队时* - null, 表示是没有后继节点, 是最后了*/Node<E> next;Node(E x) { item = x; }}
}

 

(二)、加锁分析

(三)、put

public void put(E e) throws InterruptedException {if (e == null) throw new NullPointerException();int c = -1;Node<E> node = new Node<E>(e);final ReentrantLock putLock = this.putLock;// count 用来维护元素计数final AtomicInteger count = this.count;putLock.lockInterruptibly();try {// 满了等待while (count.get() == capacity) {// 倒过来读就好: 等待 notFullnotFull.await();}// 有空位, 入队且计数加一enqueue(node);c = count.getAndIncrement();// 除了自己 put 以外, 队列还有空位, 由自己叫醒其他 put 线程if (c + 1 < capacity)notFull.signal();} finally {putLock.unlock();}// 如果队列中有一个元素, 叫醒 take 线程if (c == 0)// 这里调用的是 notEmpty.signal() 而不是 notEmpty.signalAll() 是为了减少竞争signalNotEmpty();
}

(四)、take

public E take() throws InterruptedException {E x;int c = -1;final AtomicInteger count = this.count;final ReentrantLock takeLock = this.takeLock;takeLock.lockInterruptibly();try {while (count.get() == 0) {notEmpty.await();}x = dequeue();c = count.getAndDecrement();if (c > 1)notEmpty.signal();} finally {takeLock.unlock();}// 如果队列中只有一个空位时, 叫醒 put 线程// 如果有多个线程进行出队, 第一个线程满足 c == capacity, 但后续线程 c < capacityif (c == capacity)// 这里调用的是 notFull.signal() 而不是 notFull.signalAll() 是为了减少竞争signalNotFull() return x;
}

(五)、ArrayBlockingQueue

三、ConcurrentLinkedQueue

四、CopyOnWriteArrayList

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/571850.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Ubuntu20.04 安装 OpenCV3 过程中遇到的各种问题及其解决办法

文章目录 前言开始安装OpenCV3问题1&#xff1a;ICV: Failed to download ICV package: ippicv_linux_20151201.tgz.1.1 具体步骤 问题2&#xff1a;/usr/include/c/7/cstdlib:75:15: fatal error: stdlib.h: No such file or directory问题3&#xff1a;error: CODEC_FLAG_GLO…

Linux指令大全,第二篇(超详细版)

目录 9.1 链接文件的命令 10.1. 用户和权限 11.1 文件压缩和解压命令 12.1 文件操作命令补充 13.1 Vim编辑器的使用 14.1 Linux开关机命令 15.1 Shell Linux 程序设计&#xff08;未完持续更新~&#xff09; 16.1 以上运行效果图如下 9.1 链接文件的命令 9.1.1 …

codesys通过moudbus TCP连接西门子1214c,西门子做客户端

思路在codesys中发送数据到西门子&#xff0c;西门子原封不动的将数据传回。 1.首先配置codesys; 我设置了500个&#xff0c;但是好像发不这么多&#xff0c;只能120多个。因为什么来我忘了。但是这里不影响。 2.配置映射&#xff1a; 3.写代码 PROGRAM PLC_PRG VARarySendDa…

方案分享 | 嵌入式指纹方案

随着智能设备的持续发展&#xff0c;指纹识别技术成为了现在智能终端市场和移动支付市场中占有率最高的生物识别技术。凭借高识别率、短耗时等优势&#xff0c;被广泛地运用在智能门锁、智能手机、智能家居等设备上。 上海航芯在2015年进入指纹识别应用领域&#xff0c;自研高性…

python第三次作业

1、求一个十进制的数值的二进制的0、1的个数 def count_0_1_in_binary(decimal_num):binary_str bin(decimal_num)[2:]count_0 binary_str.count(0)count_1 binary_str.count(1)return count_0, count_1decimal_number int(input("十进制数&#xff1a;")) zero…

DVB-S系统仿真学习

DVB-S系统用于卫星电视信号传输&#xff0c;发送端框图如下所示 扰码 实际数字通信中&#xff0c;载荷数据的码元会出现长连0或长连1的情况&#xff0c;不利于接收端提取时钟信号&#xff0c;同时会使得数据流中含有大量的低频分量&#xff0c;使得QPSK调制器的相位长时间不变…

VGG16神经网络搭建

一、定义提取特征网络结构 将要实现的神经网络参数存放在列表中&#xff0c;方便使用。 数字代表卷积核的个数&#xff0c;字符代表池化层的结构 cfgs {"vgg11": [64, M, 128, M, 256, 256, M, 512, 512, M, 512, 512, M],VGG13: [64, 64, M, 128, 128, M, 256, …

LIS、LCS算法模型

文章目录 1.LCS算法模型2.LIS算法模型 1.LCS算法模型 LCS问题就是给定两个序列A和B&#xff0c;求他们最长的公共子序列。 在求解时&#xff0c;我们会设dp[i][j]表示为A[1 ~ i]序列和B[1 ~ j]序列中&#xff08;不规定结尾&#xff09;的最长子序列的长度。 if(a[i]b[i]) dp…

MFC标签设计工具 图片控件上,移动鼠标显示图片控件内的鼠标xy的水平和垂直辅助线要在标签模板上加上文字、条型码、二维码 找准坐标和字体大小 源码

需求&#xff1a;要在标签模板上加上文字、条型码、二维码 找准坐标和字体大小 我生成标签时&#xff0c;需要对齐和 调文字字体大小。这工具微调 能快速知道位置 和字体大小。 标签设计(点击图片&#xff0c;上下左右箭头移动 或-调字体) 已经够用了&#xff0c;滚动条还没完…

静态代理,jdk动态代理,cglib动态代理

文章目录 静态代理动态代理jdk动态代理JDK生成的动态代理类大概源码cglib动态代理 代理模式就是用代理对象代替真实对象去完成相应的操作&#xff0c;并且能够在操作执行的前后对操作进行增强处理。 静态代理 mybatis使用的就是静态代理&#xff0c;相比动态代理&#xff0c;…

Mamba: Linear-Time Sequence Modeling with Selective State Spaces(论文笔记)

What can I say? 2024年我还能说什么&#xff1f; Mamba out! 曼巴出来了&#xff01; 原文链接&#xff1a; [2312.00752] Mamba: Linear-Time Sequence Modeling with Selective State Spaces (arxiv.org) 原文笔记&#xff1a; What&#xff1a; Mamba: Linear-Time …

STL的基本概念

一、STL的诞生 长久以来&#xff0c;软件界一直希望建立一种可重复利用的东西 C的面向对象和泛型编程思想&#xff0c;目的就是复用性的提升 面向对象的三大特性(简单理解) 封装&#xff1a;把属性和行为抽象出来作为一个整体来实现事和物 继承&#xff1a;子类继承父类&a…