数据结构/C++:位图 布隆过滤器

数据结构/C++:位图 & 布隆过滤器

    • 位图
      • 实现
      • 应用
    • 布隆过滤器
      • 实现
      • 应用


哈希表通过映射关系,实现了O(1)的复杂度来查找数据。相比于其它数据结构,哈希在实践中是一个非常重要的思想,本博客将介绍哈希思想的两大应用,位图与布隆过滤器。


位图

看到以下题目:

给40亿个无序不重复的无符号整数(unsigned int)。如何判断一个数字是否在这40亿个数字之中?

大部分人拿到这道题,也许会想到mapset哈希这样的容器。但是其有40亿个数据,而且是整型,最后估算下来,光是数据就占用了十多个G,何况还要用红黑树,哈希表这样的结构存储下来,这是不现实的。

仔细想想,对于这道题目而言,一个数据只有两种状态:在/不在。如果我们想要标识两种状态,其实只需要一个比特位就够了,0表示不存在,1表示存在。通过哈希的映射思想,我们可以把每一个数据映射到一个比特位中,这就是位图的概念

在STL库中,已经为我们提供了位图bitset,我先简单讲解一下bitset的接口,再给大家实现一个位图。

在这里插入图片描述

bitset中,存在着一个非类型模板参数N,其代表位图中要开多少个比特位。

接口功能
operator[]返回对应位置的引用
count计算所有比特位中1的个数
size返回比特位的个数
test检测某一个位,是1返回true,是0返回false
set把某一个位的值改为1
reset把某一个位的值改为0

实现

基本框架如下:

template<size_t N>
class bitSet
{
public:private:vector<int> _bits;
};

我们把位图做成了一个模板,模板参数N用于传参,代表要开几个位。那么我们要如何开出N个比特位?其实我们可以用一个int类型的数组vector,一个int有32bit,那么我们开出来的元素个数就是N / 32个。但是由于C++的除法会向下取整,所以我们要额外+1,避免开出来的位不够。这样我们就可以写一个构造函数:

template<size_t N>
class bitSet
{
public:bitSet(){_bits.resize(N / 32 + 1, 0);}private:vector<int> _bits;
};

接着我们来实现bitset中最重要的几个接口:

set

set接口的功能是把指定的位改为1。
现在传进来一个整数x,我们要如何定位到它属于vector中哪一个元素的哪一个位呢?
其实也很简单,一个元素有32bit,那么我们让x / 32就可以得到其对应的整数了。至于它在整数的第几位,那就是x % 32

size_t i = x / 32; // vector的第i个元素
size_t j = x % 32; // 第i个元素的第j个比特位

现在我们的任务就是把第i个元素的第j个比特位变成1。我们可以把数字1左移j位,然后让_bits[i]与左移后的值按位或。这样就不会影响到其他位,还能把目标位变为1。

比如把11001100的第4位变为1:

   11001100 //待修改数据00000001 //数字100010000 //数字1左移4位
------------11001100| 00010000 //按位或------------11011100

可以看到,我们确实把11001100的第4位变为1了。

set接口如下:

void set(size_t x)
{assert(x <= N);size_t i = x / 32;size_t j = x % 32;_bits[i] |= (1 << j);
}

reset
reset接口的功能是把指定的位改为0。

通过之前同样的办法,定位到第i个元素的第j位,接下来的任务就是把第i个元素的第j位变为0。想要让一个位变为0,只要让它按位与上0就可以了,但是我们其它的位不能变,要按位与1。也就是说我们要拿到第j位为0,其它位为1的数据。

我们之前通过数字1的左移,可以拿到第j位为1,其他位为0的数据。那么我们直接取反,就可以得到第j位为0,其它位为1的数据了。

代码如下:

void reset(size_t x)
{assert(x <= N);size_t i = x / 32;size_t j = x % 32;_bits[i] &= ~(1 << j);
}

test
test接口的功能是检测指定位的值是0还是1。

我们直接让1左移j位,按位与就行了,代码如下:

bool test(size_t x)
{assert(x <= N);size_t i = x / 32;size_t j = x % 32;return _bits[i] & (1 << j);
}

这就是位图最重要的三个操作了,整体还是非常简单的。至于其他接口,都只是锦上添花的作用,而且实现起来也很简单,这里不做讲解了。

位图在处理大量数据时,有非常明显的优势,其主要功能如下:

  1. 标识一个数据的状态
  2. 以O(1)的复杂度查找一个数据的状态
  3. 排序 + 去重

应用

我们再看到几个题目,来加深对位图的理解:

给两个文件,分别有100亿个整数(unsigned int),我们只有1G内存,如何找到两个文件的交集?

根据估算,一个文件的大小大约就在37G,这是不可能放进内存中直接比较的,因此我们可以考虑位图。因为所有数据都是整数,所以数据范围在0 - 42亿之间,我们要开42亿个位。经过计算,42亿bit,大概也就是0.48GB,对于内存而言,还是很友好的。

我们分别把两个文件的数据分别插入到两个位图中,此时我们就有两个范围是0 - 42亿数的位图了,总共也就是0.96GB,在1G限制范围内。然后我们再遍历两个位图,分别对比每一个位,只要两张位图该位都是1,那就是文件的交集。

一个文件有100亿个整数(int),设计算法找到出现次数不超过2次的所有整数

先前我们通过一个比特位标识了一个数据在与不在,但是此题总数据存在多种状态:不存在存在一个存在两个以上三种状态。按照位图的思想,标识三种状态,至少需要2bit,比如00表示不存在,01表示存在一个,10表示存在两个及以上。这样我们就可以设计算法了:

template<size_t N>
class two_bit_set
{
public:void set(size_t x){//00 -> 01if (_bs1.test(x) == false&& _bs2.test(x) == false){_bs2.set(x);}//01 -> 10else if (_bs1.test(x) == false&& _bs2.test(x) == false){_bs1.set(x);_bs2.reset(x);}//10 -> 不处理}int test(size_t x){if (_bs1.test(x) == false&& _bs2.test(x) == false){return 0;}else if (_bs1.test(x) == false&& _bs2.test(x) == false){return 1;}else{return 2;//出现2次以上}}private:bitset<N> _bs1;bitset<N> _bs2;
};

以上代码中,我们在类中定义了两个位图,两个位图的同一个位用于标识一个数据的不同状态,这样就可以区分数据的情况了。

以此类推,当我们发现一张位图无法标识一个数据的状态数目时,就可以用多张位图组合


布隆过滤器

假设某个游戏公司,在开服第一天因为过于火爆,有大量的玩家同时注册游戏,这给后台游戏服务器造成了大量压力。其中一个问题就是:游戏要求玩家之前不能有重复的名字,但是每次玩家输入一个名字的时候,都要去后台的数据库查询这个名字存不存在。这导致数据库访问非常迟缓,请问要如缓解这个问题?

以上问题在于,每当一个玩家输入一个名称(字符串),都要去数据库查询,看是否存在相同的名字。有没有办法能够快速查询到一个名字是否重复呢?这就不得不提布隆过滤器了。

布隆过滤器是由布隆(Burton Howard Bloom)在1970年提出的 一种紧凑型的、比较巧妙的概
率型数据结构,特点是高效地插入和查询,可以用来告诉你 “某样东西一定不存在或者可能存
在”
,它是用多个哈希函数,将一个数据映射到位图结构中。此种方式不仅可以提升查询效率,也可以节省大量的内存空间。

现在我们有一下字符串:

  • "Hello python"
  • "Hello C++"
  • "Hello C#"
  • "Hello Go"
  • "Hello CSDN"

假设我们现在有一个位图,接着我们把每一个字符串映射到位图中,我们是否可以通过位图来判定一个字符串存不存在呢?这是不准确的,因为两个字符串有可能会被映射到同一个位上,这就会导致误差,于是布隆觉得,我们能不能把误差降到非常低呢?

于是布隆过滤器的思想就诞生了:

把一个数据通过三套不同的哈希函数,映射到三个位上

当我们查找数据的时候,只有这个数据上的三个位都为1,才说明这个数据存在。

比如这样:
在这里插入图片描述

图中竖着的长条,是一个位图,我们输入了一个Hello C++字符串,然后通过三种不同的哈希函数,把这个字符串映射到了三个不同的位上。

接着我们再插入一个Hello python
在这里插入图片描述

Hello python也映射到了三个位,而且没有与Hello C++发生重复。但是也有特殊的情况,比如我再插入Hello Go

在这里插入图片描述
可以看到,Hello C++Hello Go有一个位发生了重复,这会不会造成数据的误判呢?答案是不会的,因为这两个字符串的另外两个位不同,只有一个字符串的三个位都存在,才说明这个字符串有可能存在,比如我现在查询Hello CSDN是否在位图中:
在这里插入图片描述
可以看到,Hello CSDN这个字符串,也映射到了三个位,其中有一个位是1,而另外两个位是0只要有一个位对不上,就说明这个字符串一定不存在。因此Hello CSDN不存在在位图中。

接下来我们就来实现一个这样的布隆过滤器:


实现

哈希函数
这里我们需要用到三个字符串 -> 整型的哈希函数,这里我取用了目前经过研究效果比较好的三个算法:BKDRAPDJB

struct HashFuncBKDR
{//BKDRsize_t operator()(const string& s){size_t hash = 0;for (auto ch : s){hash += ch;hash *= 131;}return hash;}
};struct HashFuncAP
{//APsize_t operator()(const string& s){size_t hash = 0;int i;for (i = 0; i < s.size(); i++){if ((i & 1) == 0)// 偶数位字符hash ^= ((hash << 7) ^ (s[i]) ^ (hash >> 3));else//奇数位字符hash ^= (~((hash << 11) ^ (s[i]) ^ (hash >> 5)));}return hash;}
};struct HashFuncDJB
{//DJBsize_t operator()(const string& s){register size_t hash = 5381;for (auto ch : s)hash = hash * 33 ^ ch;return hash;}
};

这个算法的内部实现并不重要,我们只需要知道,它们是三套不同的规则,可以把一个字符串映射到三个不同的位上。

基本结构

template<size_t N,class K = string,class Hash1 = HashFuncBKDR,class Hash2 = HashFuncAP,class Hash3 = HashFuncDJB>
class BloomFilter
{
public:private:bitset<5 * N> _bs;
};

布隆过滤器BloomFilter有五个模板参数,N代表要插入的数据个数,K代表要处理的类型,剩下三个是不同的哈希函数,用于映射不同的位。

假设x为哈希函数的个数,m是布隆过滤器的长度,n是插入元素的个数,经过研究发现,三者满足以下关系式时,布隆过滤器的误判率最低:

x = m n ln ⁡ 2 x=\frac{m}{n} \ln 2 x=nmln2

此处,我们的哈希函数x = 3,那么我们的m大约是n4.3倍。因此在哈希函数为3个的情况下,布隆过滤器的长度最好是插入数据个数的4.3倍。此处我们取整数5倍,因此有bitset<5 * N> _bs;

Set接口

想要插入一个数据,其实就是通过三个哈希函数计算出三个映射位置,并把它们设置为1。
代码如下:

void Set(const K& key)
{size_t hash1 = Hash1()(key) % (5 * N);size_t hash2 = Hash2()(key) % (5 * N);size_t hash3 = Hash3()(key) % (5 * N);_bs.set(hash1);_bs.set(hash2);_bs.set(hash3);
}

Test接口

想要检测一个数据是否存在,就是检测出这个数据对应的三个映射位置是否都是1。

代码如下:

bool Test(const K& key)
{size_t hash1 = Hash1()(key) % (5 * N);if (_bs.test(hash1) == false)return false;size_t hash2 = Hash2()(key) % (5 * N);if (_bs.test(hash2) == false)return false;size_t hash3 = Hash3()(key) % (5 * N);if (_bs.test(hash3) == false)return false;return true; // 存在误判
}

布隆过滤器不能轻易地删除一个数据,比如以下情况:

在这里插入图片描述

字符串Hello C++Hello Go有一个位重复了,如果我们贸然删掉字符串Hello Go,那么就会导致Hello C++有一个位丢失了,那么我们不仅查找不到被删除的Hello Go,也查找不到Hello C++了。因此布隆过滤器不支持删除操作。


应用

布隆过滤器有以下特性:

  1. 如果检测到一个数据不存在,那么这个数据一定不存在
  2. 如果检测到一个数据存在,那么这个数据有可能存在

布隆过滤器最大特点就在于可以100%检测一个数据的不存在。那么我们回到最开始的问题:

每当一个玩家输入一个名称(字符串),都要去数据库查询,看是否存在相同的名字。有没有办法能够快速查询到一个名字是否重复呢?

我们可以把所有名字映射到布隆过滤器中,所有玩家输入一个字符串后要经过以下过程:

  1. 检测该字符串在不在布隆过滤器中
  • 如果不存在,说明这个字符串一定不存在,此时直接返回结果,告诉玩家该名称可用
  • 如果存在,说明这个字符串可能存在,此时再到数据库中去查找

布隆过滤器之所以叫做过滤器,就在于它可以过滤掉所有不存在的情况。

不妨想象一下,现在让两个人给自己的游戏账号取一个名字,它们重复的概率有多高呢?其实很低了。如果一个用户输入一个游戏名称,有80%的概率是不重复的,那么布隆过滤器就可以过滤掉80%的访问量,给数据库降低80%的压力。而且布隆过滤器搜索的时间复杂度仅仅为O(1),可见布隆过滤器有多么强大。


本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/573507.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

c# 跳转搜索(Jump Search)

与二分搜索一样&#xff0c;跳转搜索是一种针对排序数组的搜索算法。基本思想是通过按固定步骤向前跳跃或跳过某些元素来代替搜索所有元素来检查更少的元素&#xff08;比线性搜索&#xff09;。例如&#xff0c;假设我们有一个大小为 n 的数组 arr[] 和一个大小为 m 的块&…

Java智慧工地源码 智慧工地的价值体现 开发一套智慧工地系统需要多少钱

智慧工地是智慧地球理念在工程领域的行业具现&#xff0c;是一种崭新的工程全生命周期管理理念。它运用信息化手段&#xff0c;通过三维设计平台对工程项目进行精确设计和施工模拟&#xff0c;围绕施工过程管理&#xff0c;建立互联协同、智能生产、科学管理的施工项目信息化生…

Kotlin 中的类和构造方法

Kotlin 中的类与接口和 Java 中的类与接口还是有区别的。例如&#xff0c;Koltin 中的接口可以包含属性声明&#xff0c;与 Java 不同的是。Kotlin 的声明默认是 final 和 public 的。此外&#xff0c;嵌套的类默认并不是内部类&#xff1a;它们并没有包含对其它外部类的隐式引…

Python处理文件系统路径库之pathlib使用详解

概要 Python的pathlib库提供了一种面向对象的方法来处理文件系统路径。它使得路径操作更加直观和易于管理,相比于传统的os.path模块,pathlib提供了更为丰富和灵活的API。 pathlib库 pathlib模块在Python中用于处理文件系统路径。通过使用面向对象的方法,它允许路径表示为P…

15K star!一款功能强悍的手机电脑同屏工具,开源无需root!

在日常工作、生活场景中&#xff0c;经常会遇到需将手机与电脑屏幕进行共享。 今天就给大家推荐一款Android实时投屏神器&#xff1a;QtScrcpy。 它可以通过 USB / 网络连接Android设备&#xff0c;并进行显示和控制&#xff0c;且无需root权限。 1、简介 QtScrcpy是一款功…

亮数据——让你的IP走出去,让价值返回来

亮数据——让你的IP走出去&#xff0c;让价值返回来 前言跨境电商最最最大的痛点——让IP走出去超级代理服务器加速网络免费的代理管理软件亮数据解决痛点亮数据优势介绍亮数据浏览器的使用示例总结 前言 当前社会信息的价值是不可想象的&#xff0c;今天在亮数据中看到了个【…

书生浦语大模型实战营第一课笔记

书生浦语大模型全链路开源体系 课程笔记大模型的发展趋势InternLM2的主要亮点模型到应用的典型流程全链路的开源工具 InternLM2技术报告笔记大型语言模型的发展InternEvoModel Structure训练数据 课程笔记 第一节课主要对大模型进行介绍&#xff0c;特别是书生浦语大模型的发展…

InfoNCE loss

InfoNCE loss是一种用于自监督学习的损失函数&#xff0c;通常用于训练对比学习模型&#xff0c;如自编码器或神经网络。全称是"InfoNCE: Contrastive Estimation of Neural Entropy"&#xff0c;基于对比学习的思想&#xff0c;旨在最大化正样本的相似性&#xff0c…

【python可视化】折线图精粹:重点突出的艺术与技巧

为方便不同读者阅读&#xff0c;这里把python的代码解释也一起补充上来&#xff0c;完整的notebook欢迎关注微信公众号 数据分析螺丝钉 回复关键词 python可视化领取&#xff0c;重点是可视化的思路&#xff0c;用excel或者其他工具也能实现 步骤&#xff1a;需要先经过一轮分析…

开源项目ChatGPT-Next-Web的容器化部署(二)-- jenkins CI构建并推送镜像

一、背景 接着上文已制作好了Dockerfile&#xff0c;接下来就是docker build/tag/push等一系列操作了。 不过在这之前&#xff0c;你还必须在jenkins等CI工具中&#xff0c;拉取源码&#xff0c;然后build构建应用。 因为本文的重点不是讲述jenkins ci工具&#xff0c;所以只…

MySQL数据库基础--约束

约束 约束是作用于表中字段上的规则&#xff0c;用于限制在表中的数据 目的&#xff1a;保证数据库中数据的正确&#xff0c;有效性和完成性。 分类&#xff1a; 注意&#xff1a;约束是作用于表中字段上的&#xff0c;可以在创建表/修改表的时候哦添加约束 外键约束 外键用…

2024年3月28日蚂蚁新村今日答案:人间能得几回闻和冰蚕吐凤雾绡空哪句诗描写的云锦之美?

蚂蚁新村是一个虚拟社区。在这个虚拟社区中&#xff0c;用户可以参与各种活动&#xff0c;比如生产能量豆、做慈善捐赠等。同时&#xff0c;蚂蚁新村也提供了一些知识问答环节&#xff0c;用户在参与的过程中可以增进知识。这些问答内容往往涉及广泛的主题&#xff0c;如文化、…