分类预测 | Matlab实现CNN-LSTM-Mutilhead-Attention卷积神经网络-长短期记忆网络融合多头注意力机制多特征分类预测

分类预测 | Matlab实现CNN-LSTM-Mutilhead-Attention卷积神经网络-长短期记忆网络融合多头注意力机制多特征分类预测

目录

    • 分类预测 | Matlab实现CNN-LSTM-Mutilhead-Attention卷积神经网络-长短期记忆网络融合多头注意力机制多特征分类预测
      • 分类效果
      • 基本介绍
      • 模型描述
      • 程序设计
      • 参考资料

分类效果

在这里插入图片描述
在这里插入图片描述

在这里插入图片描述
在这里插入图片描述

在这里插入图片描述

基本介绍

1.Matlab实现CNN-LSTM-Mutilhead-Attention卷积神经网络-长短期记忆网络融合多头注意力机制多特征分类预测,CNN-LSTM-Mutilhead-Attention。多头自注意力层 (Multihead-Self-Attention):Multihead-Self-Attention多头注意力机制是一种用于模型关注输入序列中不同位置相关性的机制。它通过计算每个位置与其他位置之间的注意力权重,进而对输入序列进行加权求和。注意力能够帮助模型在处理序列数据时,对不同位置的信息进行适当的加权,从而更好地捕捉序列中的关键信息。
2.数据输入15个特征,输出4个类别,main.m是主程序,其余为函数文件,无需运行;
3.可视化展示分类准确率;
4.运行环境matlab2023b及以上。

模型描述

在这里插入图片描述

多头注意力机制(Multi-Head Attention)是一种用于处理序列数据的注意力机制的扩展形式。它通过使用多个独立的注意力头来捕捉不同方面的关注点,从而更好地捕捉序列数据中的相关性和重要性。在多变量时间序列预测中,多头注意力机制可以帮助模型对各个变量之间的关系进行建模,并从中提取有用的特征。贝叶斯优化卷积神经网络-长短期记忆网络融合多头注意力机制多变量时间序列预测模型可以更好地处理多变量时间序列数据的复杂性。它可以自动搜索最优超参数配置,并通过卷积神经网络提取局部特征,利用LSTM网络建模序列中的长期依赖关系,并借助多头注意力机制捕捉变量之间的关联性,从而提高时间序列预测的准确性和性能。

程序设计

  • 完整程序和数据获取方式资源处下载Matlab实现CNN-LSTM-Mutilhead-Attention卷积神经网络-长短期记忆网络融合多头注意力机制多特征分类预测。

%---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
%%  数据集分析
outdim = 1;                                  % 最后一列为输出
num_size = 0.7;                              % 训练集占数据集比例
num_train_s = round(num_size * num_samples); % 训练集样本个数
f_ = size(res, 2) - outdim;                  % 输入特征维度
%---------------------------------------------------------------------
%%  数据归一化
[P_train, ps_input] = mapminmax(P_train, 0, 1);
P_test  = mapminmax('apply', P_test, ps_input);t_train =  categorical(T_train)';
t_test  =  categorical(T_test )';%%  数据平铺
%   将数据平铺成1维数据只是一种处理方式
%   也可以平铺成2维数据,以及3维数据,需要修改对应模型结构
%   但是应该始终和输入层数据结构保持一致
P_train =  double(reshape(P_train, num_dim, 1, 1, M));
P_test  =  double(reshape(P_test , num_dim, 1, 1, N));%%  数据格式转换
for i = 1 : Mp_train{i, 1} = P_train(:, :, 1, i);
endfor i = 1 : Np_test{i, 1}  = P_test( :, :, 1, i);
end%% 建立模型
lgraph = layerGraph();                                                   % 建立空白网络结构
tempLayers = [sequenceInputLayer([num_dim, 1, 1], "Name", "sequence")              % 建立输入层,输入数据结构为[num_dim, 1, 1]sequenceFoldingLayer("Name", "seqfold")];                            % 建立序列折叠层
lgraph = addLayers(lgraph, tempLayers);                                  % 将上述网络结构加入空白结构中
tempLayers = [convolution2dLayer([3, 1], 16, "Name", "conv_1", "Padding", "same")  % 建立卷积层,卷积核大小[3, 1]16个特征图reluLayer("Name", "relu_1")                                          % Relu 激活层convolution2dLayer([3, 1], 32, "Name", "conv_2", "Padding", "same")  % 建立卷积层,卷积核大小[3, 1]32个特征图reluLayer("Name", "relu_2")];                                        % Relu 激活层
lgraph = addLayers(lgraph, tempLayers);                                  % 将上述网络结构加入空白结构中

参考资料

[1] http://t.csdn.cn/pCWSp
[2] https://download.csdn.net/download/kjm13182345320/87568090?spm=1001.2014.3001.5501
[3] https://blog.csdn.net/kjm13182345320/article/details/129433463?spm=1001.2014.3001.5501

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/573565.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Python 从0开始 一步步基于Django创建项目(13)将数据关联到用户

在city_infos应用程序中,每个城市信息条目是关联到城市的,所以只需要将城市条目关联到用户即可。 将数据关联到用户,就是把‘顶层’数据关联到用户。 设计思路: 1、修改顶层数据模型,向其中添加‘用户’属性 2、根…

开发面试相关的编程题

1,【求数字1出现的次数】 问题描述: 输入一个整数n,求从1到n这n个整数(十进制)中1出现的次数。要求空间复杂度为O(n)。 输入描述: 1 输入的数据包含一行: 整数N,要求N>1 输出描述: 1 输出一个整数,表示从1到N这N个…

Django安装及第一个项目

1、安装python C:\Users\leell>py --version Python 3.10.6 可以看出我的环境python的版本3.10.6,比较新 2、 Python 虚拟环境创建 2.1 官网教程 目前,有两种常用工具可用于创建 Python 虚拟环境: venv 在 Python 3.3 及更高版本中默…

Cisco Firepower FMCv修改管理Ip方法

FMCv 是部署在VMWARE虚拟平台上的FMC 部署完成后,如何修改管理IP 1 查看当前版本 show version 可以看到是for VMware 2 修改管理IP步骤 2.1 进入expert模式 expert2.2 进入超级用户 sudo su并输入密码 2.3 查看当前网卡Ip 2.4 修改Ip 命令: /…

电商数据采集平台兼具海量采集国内淘系京东国外LAZADA亚马逊阿里巴巴等平台数据采集

很多的电商数据采集API接口可以使用国内电商平台淘系、京东的行业数据,境外Lazada等平台的行业数据,以及各类直播电商数据等,相对淘数据来说,平台更多一些,但是价格也比较贵,一般是按照行业下类目来销售的&…

git 常见问题解决

1. 问题:尝试推送到一个名为“chenx”的远程存储库。错误消息显示无法找到所需的项目。 原因:我在xn的帐号中修改的代码,推到chenx自己fork的仓库,xn的gitlab没有添加我密钥 对策:只能在自己的帐号中修改密码提交等操…

代码随想录刷题随记7-字符串1

代码随想录刷题随记7-字符串1 文章目录 代码随想录刷题随记7-字符串1344.反转字符串541. 反转字符串II替换数字151.翻转字符串里的单词右旋字符串 344.反转字符串 leetcode链接 主要的难点在于使用 O(1) 的额外空间解决这一问题 反转字符串依然是使用双指针的方法 swap可以有两…

PHP图床程序优化版:图片外链服务、图床API服务、图片CDN加速与破解防盗链

图片免费上传 支持本地储存、FTP储存、第三方云储存(阿里云 OSS、腾讯云 COS、七牛云等)。 图片外链加速 一键转换第三方网站的图片外链地址为图床可分享的图片地址(支持CDN)。 图片解析服务 直接将第三方外链图片地址显示为…

有趣的css - 多弧形加载动画

大家好,我是 Just,这里是「设计师工作日常」,今天分享的是用纯css实现多双弧线加载动画。 《有趣的css》系列最新实例通过公众号「设计师工作日常」发布。 目录 整体效果核心代码html 代码css 部分代码 完整代码如下html 页面css 样式页面渲…

网站可扩展架构设计

从公众号转载,关注微信公众号掌握更多技术动态 --------------------------------------------------------------- 一、可扩展性架构简介 1.可扩展性是什么 可扩展性指系统为了应对将来需求变化而提供的一种扩展能力,当有新的需求出现时,系…

【ripro美化】全站美化包WordPress RiPro主题二开美化版sucaihu-childV1.9(功能集成到后台)

使用介绍 1、【宝塔】删除ripro文件,上传最新ripro版本,然后上传压缩包内的ripro里面的对应文件到ripro主题对应内覆盖(找到对应路径单个文件去覆盖)。 2、然后上传ripro-chlid子主题美化包到/wp-content/themes路径下 3、注意顺…

node的安装

官网下载(建议使用预编译包安装) 地址(https://nodejs.org/en/download/prebuilt-binaries) 解压包,并将 bin下面的 node npm npx加入到环境变量中或者建立软连接 ln -s 安装位置/bin/node PATH下面的路径 npm配置…