物理层
- 一、通信基础
- 1.奈氏准则、香农定理
- 2.编码与调制
- 3.电路交换、报文交换、分组交换
- 二、 传输介质、设备
- 1.导向性传输介质:
- 1.1双绞线
- 1.2 同轴电缆
- 1.3光纤
- 2.非导向性传输介质:
一、通信基础
信道带宽:信道能通过的最高频率和最低频率之差。
1.奈氏准则、香农定理
奈氏准则:也称为奈奎斯特定理,是在理想低通(无噪声、带宽受限)的信道中,极限码元传输率的计算公式为2W Baud,其中W是理想低通信道的带宽,单位为Hz。
若用V表示每个码元离散电平的数目(则极限数据率为理想低通信道下的极限数据传输速率率=2Wlog2V(单位为b/s)
对于奈氏准则,可以得出以下结论:
1)在任何信道中,码元传输速率是有上限的。若传输速率超过此上限,就会出现严重的码间串扰问题,使得接收端不可能完全正确识别码元。
2)信道的频带越宽(即通过的信号高频分量越多),就可用更高的速率进行码元的有效传输。
3)奈氏准则给出了码元传输速率的限制,但并未对信息传输速率给出限制,即未对一个码元可以对应多少个二进制位给出限制。
由于码元传输速率受奈氏准则的制约,所以要提高数据传输速率,就必须设法使每个码元携带更多比特的信息量,此时就需要采用多元制的调制方法。
香农定理:在高斯白噪声背景下的连续信道的容量 ,
其中:B为信道带宽(Hz);S为信号功率(W);n0为噪声功率谱密度(W/Hz);N为噪声功率(W)。
2.编码与调制
数据无论是数字的还是模拟的,为了传输的目的都必须转变成信号。把数据变换为数字信号的过程称为编码,把数据变换为模拟信号的过程称为调制。
数字数据编码为数字信号:
1.非归零编码 :高1低0,高电平为1,低电平为0
非归零编码(NRZ)不用归零,一个周期可以全部用来传输数据,但无法传递时钟信号,双方难以同步。
2.归零编码:信号电平在一个码元之内要恢复到零
归零编码(RZ)中用高电平代表1、低电平代表0(或者相反),每个时钟周期的中间均跳变到低电平(归零),接收方根据该跳变调整本方的时钟基准,这就为传输双方提供了自同步机制。由于归零需要占用一部分带宽,因此传输效率受到了一定的影响。
3.反向非归零编码:反向非归零编码(NRZI)与NRZ编码的区别是用信号的翻转代表0、信号保持不变代表1。
翻转的信号本身可以作为一种通知机制。这种编码方式集成了前两种编码的优点,既能传输时钟信号,又能尽量不损失系统带宽。
4.曼彻斯特编码:曼彻斯特编码(Manchester Encoding)将一个码元分成两个相等的间隔,
前一个间隔为高电平而后一个间隔为低电平表示码元1;码元0的表示方法则正好相反。
该编码的特点是,在每个码元的中间出现电平跳变,位中间的跳变既作为时钟信号(可用于同步),又作为数据信号,但它所占的频带宽度是原始频带宽度的两倍。
5.差分曼彻斯特编码:差分曼彻斯特编码常用于局域网传输,其规则是:若码元为 1,则前个码元的电平与上一码元的后半个码元的电平相同;若码元为0,则情形相反。特点:在每个码元的中间都有一次电平的跳转,可以实现自同步,且抗干扰性较好。
数字数据调制为模拟信号:
基本的数字调制方法有如下几种:
1)幅移键控(ASK)。通过改变载波信号的振幅来表示数字信号1和0,而载波的频率和相位都不改变。比较容易实现,但抗干扰能力差。
2)频移键控(FSK)。通过改变载波信号的频率来表示数字信号1和0,而载波的振幅和相位都不改变。容易实现,抗干扰能力强,目前应用较为广泛。
3)相移键控(PSK)。通过改变载波信号的相位来表示数字信号1 和0,而载波的振幅和频率都不改变。它又分为绝对调相和相对调相。
4)正交振幅调制(QAM)。在频率相同的前提下,将ASK与 PSK结合起来,形成叠加信号。
设波特率为B,采用m个相位,每个相位有n种振幅,则该QAM 技术的数据传输速率R为R=Blog2(mn) (单位为b/s)
模拟数据编码为数字信号:
模拟数据调制为模拟信号:
为了实现传输的有效性,可能需要较高的频率。这种调制方式还可以使用频分复用(FDM)技术,充分利用带宽资源。电话机和本地局交换机采用模拟信号传输模拟数据的编码方式,模拟的声音数据是加载到模拟的载波信号中传输的。
3.电路交换、报文交换、分组交换
电路交换(Circuit Exchanging):
电路交换技术的优点:
1)通信时延小
2)有序传输
3)没有冲突
4)适用范围广
5)实时性强
6)控制简单
电路交换技术的缺点:
1)建立连接时间长
2)线路独占,使用效率低
3)灵活性差
4)难以规格化
报文交换(Message Exchanging):
报文交换技术的优点:
1)无须建立连接
2)动态分配线路
3)提高线路可靠性
4)提高线路利用率
5).提供多目标服务
报文交换技术的缺点
1)由于数据进入交换结点后要经历存储、转发这一过程,因此会引起转发时延(包括接收报文、检验正确性、排队、发送时间等)。
2)报文交换对报文的大小没有限制,这就要求网络结点需要有较大的缓存空间。
分组交换(Packet Exchanging):
分组交换的优点:
1)无建立时延
2)线路利用率高
3)简化了存储管理(相对于报文交换)
4)加速传输
5)减少了出错概率和重发数据量
分组交换的缺点:
1)存在存储转发时延
尽管分组交换比报文交换的传输时延少,但相对于电路交换仍存在存储转发时延,而且其结点交换机必须具有更强的处理能力。
2)需要传输额外的信息量
每个小数据块都要加上源地址、目的地址和分组编号等信息,从而构成分组,因此使得传送的信息量增大了5%~10%,一定程度上降低了通信效率,增加了处理的时间,使控制复杂,时延增加。
3)当分组交换采用数据报服务时,可能会出现失序、丢失或重复分组,分组到达目的结点时,要对分组按编号进行排序等工作,因此很麻烦。若采用虚电路服务,虽无失序问题,但有呼叫建立、数据传输和虚电路释放三个过程。
二、 传输介质、设备
传输介质也称为传输媒体/媒介,它就是数据传输系统中在发送设备和接收设备之间的物理通路。
1.导向性传输介质:
1.1双绞线
双绞线的价格便宜,是最常用的传输介质之一,在局域网和传统电话网中普遍使用。双绞线的带宽取决于铜线的粗细和传输的距离。模拟传输和数字传输都可使用双绞线,其通信距离一般为几千米到数十千米。距离太远时,对于模拟传输,要用放大器放大衰减的信号;对于数字传输,要用中继器将失真的信号整形。
1.2 同轴电缆
由于外导体屏蔽层的作用,同轴电缆具有良好的抗干扰特性,被广泛用于传输较高速率的数据,其传输距离更远,但价格较双绞线贵。
1.3光纤
光纤不仅具有通信容量非常大的优点,还具有如下特点:
1)传输损耗小,中继距离长,对远距离传输特别经济。
2)抗雷电和电磁干扰性能好。这在有大电流脉冲干扰的环境下尤为重要。
3)无串音干扰,保密性好,也不易被窃听或截取数据。
4)体积小,重量轻。这在现有电缆管道已拥塞不堪的情况下特别有利。
2.非导向性传输介质:
即无线通信介质。
设备:
中继器:对信号进行再生和还原,对衰减的信号进行放大,保持与原数据相同,以增强信号传输的距离,延长网络的长度
集线器:实质上是一个多端口的中继器。
注意:如果某个网络设备具有存储转发的功能,那么可以认为它能连接两个不同的协议;如果该网络设备没有存储转发功能,那么认为它不能连接两个不同的协议。中继器没有存储转发功能,因此它不能连接两个速率不同的网段,中继器两端的网段一定要使用同一个协议。