【数据结构 | 图论】如何用链式前向星存图(保姆级教程,详细图解+完整代码)

一、概述

链式前向星是一种用于存储图的数据结构,特别适合于存储稀疏图,它可以有效地存储图的边和节点信息,以及边的权重。

它的主要思想是将每个节点的所有出边存储在一起,通过数组的方式连接(类似静态数组实现链表)。这种方法的优点是存储空间小,查询速度快,尤其适合于处理大规模的图数据,在一些笔试或者竞赛的场景中经常使用

下面,我们用这张图来图解一下链式前向星的存储逻辑:

在这里插入图片描述

二、前置准备

注意看这里的设定,以及我加粗的提示。

  1. head数组:head[i]存储的是节点i的第一条边的编号。这样,我们可以通过head[i]快速找到从节点i出发的所有边。

  2. next数组:next[j]存储的是编号为j的边的下一条边的编号。这样,我们可以通过next[j]快速找到从同一个节点出发的下一条边。

  3. to数组:to[j]存储的是编号为j的边的终点节点编号。这样,我们可以通过to[j]快速找到边j的终点,也就是这条边要去往哪里。

  4. weight数组:weight[j]存储的是编号为j边的权重。这样,我们可以通过weight[j]快速找到边j的权重。

  5. cnt变量:cnt用于存储边的数量,也表示边的编号。每添加一条边,cnt就会增加1。这样,我们可以通过cnt快速知道当前图中边的数量,同时我们也认为cnt是新添加边的编号

三、初始化

public static void build(int n) {cnt = 1; // 边从1开始编号Arrays.fill(head, 1, n + 1, 0); // head[1 ... n] 全设为 0
}

在链式前向星中,我们使用cnt来作为边的编号,由于边的编号是从1开始的,所以初始化时我们将cnt设置为1。同时,将head数组的所有元素设置为0。因为head[i]存储的是节点i的第一条边的编号,所以,如果节点i没有出度(即没有从节点i出发的边),那么head[i]就应该为0。初始化时所有节点都没有出度,后续在添加边的时候,会更新对应的head[i]的值。

在这里插入图片描述

四、添加边(重点)

在链式前向星中添加边的操作是最核心的,它涉及到headnexttoweight数组的更新,以及边的编号cnt的自增。

在看代码之前,我们先回顾一下各个结构的下标以及值的含义:

  1. head数组:下标i表示节点编号,值head[i]表示从节点i出发的第一条边的编号。

  2. next数组:下标j表示边的编号,值next[j]表示编号为j的边的下一条边的编号。

  3. to数组:下标j表示边的编号,值to[j]表示编号为j的边的终点节点编号。

  4. weight数组:下标j表示边的编号,值weight[j]表示编号为j的边的权重。

结合上述含义,我们来看代码就很清晰了:

// (u, v, w): 有一条边,从u节点指向v节点,权重为w
// 在每一次添加边时,cnt都表示当前未分配的边的编号,添加边后cnt需++
public static void addEdge(int u, int v, int w) {next[cnt] = head[u];to[cnt] = v;weight[cnt] = w;head[u] = cnt;++cnt;
}

首先,我们需要更新next数组。next[cnt]存储的是编号为cnt的边的下一条边的编号。在添加新边时,我们将新边的next置为旧的头边号head[u],这样就可以通过next[cnt]快速找到从节点u出发的下一条边。

然后,我们需要更新to数组,将新边的终点设置为v,这样就可以通过to[cnt]快速找到边cnt的终点。

更新weight数组也很自然,就是将新边的权重设置为w,最后,我们将节点u的头边号修改为当前新边的编号,这样就可以通过head[u]快速找到从节点u出发的第一条边。

备注:记得每添加一条边,边的编号cnt就需要增加1

五、建图

建图分为有向图与无向图,输入的参数是一个二维数组edges作为输入,这个数组的每个元素都是一个长度为3的数组,代表一条边的两个端点和这条边的权重。

// 建有向图
public static void directGraph(int[][] edges) {for (int[] edge : edges) {addEdge(edge[0], edge[1], edge[2]); // 添加有向边}
}// 建无向图
public static void undirectGraph(int[][] edges) {for (int[] edge : edges) {addEdge(edge[0], edge[1], edge[2]); // 添加边addEdge(edge[1], edge[0], edge[2]); // 添加反向边}
}

六、图解

下面这个数组提供了图的边信息,基本上题目都会给定形式的信息,让你去建图:

有一条边(u, v, w),表示从u节点指向v节点,权重为w
[[1, 6, 2],[1, 3, 57],[1, 4, 61],[2, 3, 100],[3, 5, 34],[4, 5, 13],
]

这里 u,v,w 的含义以及顺序应根据具体题目具体分析,这里的设定是(u, v, w)表示一条边从u节点指向v节点,权重为w

// 添加边:
public static void addEdge(int u, int v, int w) {next[cnt] = head[u];to[cnt] = v;weight[cnt] = w;head[u] = cnt;++cnt;
}

下面我们图解一下,在链式前向星中,依次添加6条边到有向图中的逻辑。

在这里插入图片描述

如果看不懂,建议返回上面去看各个数组的下标以及值的含义。

添加边 {1, 6, 2}

  • head[1] = 1:节点1的第一条边的编号是1。
  • next[1] = 0:边1没有下一条边。
  • to[1] = 2:边1的终点是节点2。
  • weight[1] = 6:边1的权重是6。
  • cnt:2,表示当前边的数量是1,下一条边的编号是2。

在这里插入图片描述

添加边 {1, 3, 57}

  • head[1] = 2:节点1的第一条边的编号是2。
  • next[2] = 1:边2的下一条边是边1。
  • to[2] = 3:边2的终点是节点3。
  • weight[2] = 57:边2的权重是57。
  • cnt:3,表示当前边的数量是2,下一条边的编号是3。

在这里插入图片描述

添加边 {1, 4, 61}

  • head[1] = 3:节点1的第一条边的编号是3。
  • next[3] = 2:边3的下一条边是边2。
  • to[3] = 4:边3的终点是节点4。
  • weight[3] = 61:边3的权重是61。
  • cnt:4,表示当前边的数量是3,下一条边的编号是4。

在这里插入图片描述

添加边 {2, 3, 100}

  • head[2] = 4:节点2的第一条边的编号是4。
  • next[4] = 0:边4没有下一条边。
  • to[4] = 3:边4的终点是节点3。
  • weight[4] = 100:边4的权重是100。
  • cnt:5,表示当前边的数量是4,下一条边的编号是5。

在这里插入图片描述

添加边 {3, 5, 34}

  • head[3] = 5:节点3的第一条边的编号是5。
  • next[5] = 0:边5没有下一条边。
  • to[5] = 5:边5的终点是节点5。
  • weight[5] = 34:边5的权重是34。
  • cnt:6,表示当前边的数量是5,下一条边的编号是6。

在这里插入图片描述

添加边 {4, 5, 13}

  • head[4] = 6:节点4的第一条边的编号是6。
  • next[6] = 0:边6没有下一条边。
  • to[6] = 5:边6的终点是节点5。
  • weight[6] = 13:边6的权重是13。
  • cnt:7,表示当前边的数量是6,下一条边的编号是7。

在这里插入图片描述

七、遍历图

遍历图的逻辑也不难理解,就是对于每个节点,遍历其所有的邻居,根据next数组不断去拿到和每个节点连接的边的编号,直到没有邻居节点为止,一步步跳着找嘛。

步骤如下:

  • 对于每个节点,通过head数组找到该节点的第一条边。
  • 通过next数组找到下一条边,直到next数组的值为0,表示没有更多的边。
  • 在遍历过程中,可以通过toweight数组获取边的终点和权重。

我们用打印邻居节点的方式来验证遍历的结果:

public static void traversal(int n) {StringBuilder sb = new StringBuilder();sb.append("链式前向星遍历,u: (v, w)表示u有一条边前往v,权重为w\n");for (int i = 1; i <= n; i++) {sb.append("[").append(i).append("]: ");for (int ei = head[i]; ei > 0; ei = next[ei]) {sb.append("(").append(to[ei]).append(",").append(weight[ei]).append(") "); // 输出边的终点和权重}sb.append("\n");}System.out.println(sb.toString()); // 打印结果
}

八、完整代码

package cn.zhengyiyi;import java.util.Arrays;public class Main {public static int N = 11;public static int M = 21; /*** 编号为 i 的节点,其第一条边的编号为 head[i]* 备注:如果 head[i] 为0,说明没有一条边从节点 i 出发*/public static int[] head = new int[N];/*** 编号为 i 的边,它的下一条边是 next[i],*/public static int[] next = new int[M];/*** 编号为 i 的边,前往的节点是 to[i],也就是第 i 条边的终点是 to[i]*/public static int[] to = new int[M];/*** 编号为 i 的边,权重是 weight[i]*/public static int[] weight = new int[M];/***  记录边的数量,初始时值为 1*/public static int cnt;// 初始化链式前向星public static void build(int n) {cnt = 1; // 边从1开始编号Arrays.fill(head, 1, n + 1, 0); // head[1 ... n] 全设为 0}// 添加一条边:(u->v,权重为w)public static void addEdge(int u, int v, int w) {// 1. 更新next数组,将新边的next置为旧的头边号head[u],方便后续跳到旧的头边号next[cnt] = head[u];// 2. 更新to数组,设置当前新边的终点为vto[cnt] = v; // 3. 更新weight数组,设置当前边的权重wweight[cnt] = w;// 4. 更新head数组,将原先的头边号修改为当前新边head[u] = cnt;// 5. 最后边的编号要自增++cnt;}// 建立有向图public static void directGraph(int[][] edges) {for (int[] edge : edges) {addEdge(edge[0], edge[1], edge[2]); // 添加有向边}}// 建立无向图public static void undirectGraph(int[][] edges) {for (int[] edge : edges) {addEdge(edge[0], edge[1], edge[2]); // 添加边addEdge(edge[1], edge[0], edge[2]); // 无向图需要添加反向边}}// 遍历图public static void traversal(int n) {StringBuilder sb = new StringBuilder();sb.append("链式前向星遍历,u: (v, w)表示u有一条边前往v,权重为w\n");for (int i = 1; i <= n; i++) {sb.append("[").append(i).append("]: ");for (int ei = head[i]; ei > 0; ei = next[ei]) {sb.append("(").append(to[ei]).append(",").append(weight[ei]).append(") "); // 输出边的终点和权重}sb.append("\n");}System.out.println(sb.toString()); // 打印结果}public static void main(String[] args) {int n = 5; // 节点数build(n); // 初始化int[][] directEdges = { // 有向图的边{ 1, 6, 2 },{ 1, 3, 57 },{ 1, 4, 61 },{ 2, 3, 100 },{ 3, 5, 34 },{ 4, 5, 13 }};directGraph(directEdges); // 建立有向图traversal(n); // 遍历有向图}
}

运行结果:

链式前向星遍历,u: (v, w)表示u有一条边前往v,权重为w
[1]: (4,61) (3,57) (6,2) 
[2]: (3,100) 
[3]: (5,34) 
[4]: (5,13) 
[5]: 

在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/577024.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

海外媒体发稿:3种媒体宣发套餐内容推广方法

现如今&#xff0c;伴随着信息技术的不断进步和推广&#xff0c;新闻媒体宣发变成企业品牌推广的重要手段之一。为了方便让新闻信息新闻资讯传递给目标群体&#xff0c;公司一般会选择不同的套餐内容和推广方法。下面我们就详细介绍3种新闻资讯新闻媒体宣发套餐内容推广方法。 …

springboot通过threadLocal+参数解析器实现保存当前用户登录信息

首先先介绍一下threadLocal ThreadLocal 线程局部变量&#xff0c;创建一个线程变量后&#xff0c;针对这个变量可以让每个线程拥有自己的变量副本&#xff0c;每个线程是访问的自己的副本&#xff0c;与其他线程的相互独立。 大致知道threadLocal就可以了&#xff0c;然后我…

upload-labs-master靶场训练笔记

2004.2.17 level-1 &#xff08;前端验证&#xff09; 新建一个写有下面一句话木马的php文件&#xff0c;然后把后缀改为png <?php eval($_POST["abc"]); ?> 用bp抓包后更改文件后缀为php 再用蚁剑等工具链接即可拿下shell level-2 &#xff08;后端…

政安晨:专栏目录【TensorFlow与Keras机器学习实战】

政安晨的个人主页&#xff1a;政安晨 欢迎 &#x1f44d;点赞✍评论⭐收藏 收录专栏: TensorFlow与Keras机器学习实战 希望政安晨的博客能够对您有所裨益&#xff0c;如有不足之处&#xff0c;欢迎在评论区提出指正&#xff01; 本篇是作者政安晨的专栏《TensorFlow与Keras机器…

代码随想录笔记|C++数据结构与算法学习笔记-栈和队列(〇)|stack、queue、单调队列和优先级队列(priority_queue)、大顶堆和小顶堆

文章目录 stack容器stack 基本概念常用接口构造函数赋值操作数据存取大小操作 queue容器queue常用接口构造函数&#xff1a;赋值操作数据存取大小操作 单调队列定义实现代码实现 基本应用一&#xff1a;滑动窗口思路与算法 优先级队列定义大顶堆&#xff08;最大堆&#xff09;…

Tomcat项目创建 以及 在IDEA当中集成Tomcat

一: 有关Tomcat的WEB项目创建 TOMCAT项目的创建有两种方式, 第一种是利用骨架进行创建, 第二种是利用填补进行相应的创建, 不适用骨架进行创建 ,在这里主要聊第二种 (使用IDEA版本为2023) 1. 创建MAVEN项目, 非骨架形式 2.在相应的pom文件当中设置打包方式 为 war包的打包形…

centos7网卡无法启动

今天启动虚拟机&#xff0c;发现网络不通&#xff0c;检测了IP地址等都没有问题,重启网卡服务提示失败&#xff0c;最后查看了虚拟机的网络服务状态&#xff0c;报错&#xff1a; 执行以下操作可以解决&#xff1a; systemctl stop NetworkManager #停止网络守护进程 systemc…

如何使用固定公网地址远程连接Python编译器并将运行结果返回到Pycharm

文章目录 一、前期准备1. 检查IDE版本是否支持2. 服务器需要开通SSH服务 二、Pycharm本地链接服务器测试1. 配置服务器python解释器 三、使用内网穿透实现异地链接服务器开发1. 服务器安装Cpolar2. 创建远程连接公网地址 四、使用固定TCP地址远程开发 本文主要介绍如何使用Pych…

IP地址暴露可能带来的风险和危害

当自己的IP地址暴露时&#xff0c;可能会面临一系列的风险和潜在危害。IP地址作为互联网上连接用户与网络设备的标识符&#xff0c;其安全性对于个人信息安全至关重要。以下将详细探讨IP地址暴露可能带来的后果&#xff0c;并提出相应的防范措施。 首先&#xff0c;IP地址暴露可…

2024 3.23~3.29周报

上周工作 SVInvNet论文研读 本周计划 加入DenseNet&#xff0c;修改网络架构&#xff0c;跑代码 总结 DenseNet 密集块&#xff1a;DenseNet将网络分成多个密集块&#xff08;Dense Block)。在每个密集块内&#xff0c;每一层都连接到前面所有的层。这种跳跃连接有助于解…

T-Mobile紫卡激活(Ultra)

https://my.ultramobile.com/paygo/activation 人工智能学习网站&#xff1a; https://chat.xutongbao.top

canvas画图,拖动画好的椭圆边框

提示&#xff1a;canvas画图&#xff0c;拖动画好的椭圆边框 文章目录 前言一、拖动画好的椭圆边框总结 前言 一、拖动画好的椭圆边框 test.html <!DOCTYPE html> <html lang"en"> <head><meta charset"UTF-8"><meta name&q…