数据结构进阶篇 之 【二叉树链序存储】的整体实现讲解

在这里插入图片描述
封建迷信我嗤之以鼻,财神殿前我长跪不起

一、二叉树链式结构的实现

1.二叉树的创建

1.1 手动创建

1.2 前序递归创建

2.二叉树的遍历

2.1 前序,中序以及后序遍历概念

2.2 层序遍历概念

2.3 前序打印实现

2.4 中序打印实现

2.4 后序打印实现

2.5 层序打印实现

2.6 判断是否为完全二叉树

3. 其他功能实现

3.1 二叉树节点个数

3.2 二叉树第k层节点个数

3.3 二叉树查找值为x的节点

3.4 二叉树叶子节点个数

3.5 二叉树的销毁

二、完结撒❀

–❀–❀–❀–❀–❀–❀–❀–❀–❀–❀–❀–❀–❀–❀–❀-正文开始-❀–❀–❀–❀–❀–❀–❀–❀–❀–❀–❀–❀–❀–❀–❀–

一、二叉树链式结构的实现

再看二叉树基本操作前,再回顾下二叉树的概念,二叉树是:

1. 空树。
2. 非空:根节点,根节点的左子树、根节点的右子树组成的。

在这里插入图片描述
从概念中可以看出,二叉树定义是递归式的,因此后序基本操作中基本都是按照该概念实现的。
在这里插入图片描述

1.二叉树的创建

二叉树节点链式结构:

//对二叉树的使用链式结构(非满二叉树,非完全二叉树)
typedef int BTDataType;typedef struct BinTreeNode
{struct BinTreeNode* left;struct BinTreeNode* right;BTDataType val;
}BTNode;

1.1 手动创建

我们在一些情况下为了方便理解二叉树,我们会直接按照二叉树逻辑进行手动创建,这样更容易让人理解

代码实现:

//手搓一个二叉树
BTNode* BuyBTNode(BTDataType x)
{BTNode* newnode = (BTNode*)malloc(sizeof(BTNode));if (newnode == NULL){perror("malloc fail");return;}newnode->left = NULL;newnode->right = NULL;newnode->val = x;return newnode;
}BTNode* CreateTree()
{BTNode* n1 = BuyBTNode(1);BTNode* n2 = BuyBTNode(2);BTNode* n3 = BuyBTNode(3);BTNode* n4 = BuyBTNode(4);BTNode* n5 = BuyBTNode(5);BTNode* n6 = BuyBTNode(6);n1->left = n2;n1->right = n4;n2->left = n3;n4->left = n5;n4->right = n6;return n1;
}

按照上面代码为例,实现的二叉树为:
在这里插入图片描述

1.2 前序递归创建

不清楚前序的同学可以先学习下面二叉树的遍历,再上来进行学习。

二叉树分为根,左子树,右子树,而左子树,右子树又可以分为根和左子树右子树(当然左右子树也可以为空),那么这就很符合递归的逻辑,所以我们要完成前序递归创建二叉树就需要先知道:

1.递归子问题(每次递归所要执行的操作)
2.最小子问题(终止递归返回条件)

比如我们要前序递归创建下面二叉树:
在这里插入图片描述

其前序遍历为:1 2 3 4 5 6
代码实现:

//创建一个二叉树(按照前序创建)
BTNode* BTCreate(BTNode* root)
{BTDataType ret = 0;printf("请输入该节点的值:>");scanf("%d", &ret);if (ret != 0)//设置结束链表创建点{root = (BTNode*)malloc(sizeof(BTNode));if (root == NULL){perror("malloc fail");return;}root->val = ret;root->left = NULL;root->right = NULL;root->left = BTCreate(root->left);root->right = BTCreate(root->right);}return root;
}

根据代码输入:1 2 3 0 0 0 4 5 0 0 6 0 0
即可创建上面二叉树
递归代码导图:
在这里插入图片描述比较抽象,大家理解就行

中序和后序大家感兴趣可以下去查阅学习。

2. 二叉树的遍历

2.1 前序,中序以及后序遍历概念

学习二叉树结构,最简单的方式就是遍历。

所谓二叉树遍历(Traversal)是按照某种特定的规则,依次对二叉树中的节点进行相应的操作,并且每个节点只操作一次

访问结点所做的操作依赖于具体的应用问题。遍历是二叉树上最重要的运算之一,也是二叉树上进行其它运算的基础。
在这里插入图片描述按照规则,二叉树的遍历有:前序/中序/后序的递归结构遍历

1. 前序遍历(Preorder Traversal 亦称先序遍历)——访问根结点的操作发生在遍历其左右子树之前。(N,L,R)

2. 中序遍历(Inorder Traversal)——访问根结点的操作发生在遍历其左右子树之中(间)。(L,N,R)

3. 后序遍历(Postorder Traversal)——访问根结点的操作发生在遍历其左右子树之后。(L,R,N)

由于被访问的结点必是某子树的根,所以N(Node)、L(Left subtree)和R(Right subtree)又可解释为根、根的左子树和根的右子树。NLR、LNR和LRN分别又称为先根遍历、中根遍历和后根遍历。

下面主要分析前序递归遍历,中序与后序图解类似,同学们可自己动手绘制。

我们以下面二叉树为例:
在这里插入图片描述

前序遍历递归图解:
在这里插入图片描述
前序遍历结果:1 2 3 4 5 6
中序遍历结果:3 2 1 5 4 6
后序遍历结果:3 2 5 6 4 1

2.2 层序遍历概念

层序遍历:除了先序遍历、中序遍历、后序遍历外,还可以对二叉树进行层序遍历。设二叉树的根节点所在层数为1,层序遍历就是从所在二叉树的根节点出发,首先访问第一层的树根节点,然后从左到右访问第2层上的节点,接着是第三层的节点,以此类推,自上而下,自左至右逐层访问树的结点的过程就是层序遍历。
在这里插入图片描述

2.3 前序打印实现

根据递归先打印出根节点,再递归到左子树,再打印出左子树的根节点,继续递归到左子树直到左子树为空指针,那么函数将会继续执行当前二叉树的右子树进行递归遍历,直到为空节点。

代码实现:

//前序 根 左 右
void PreOrder(BTNode* root)
{if(root){printf("%d ", root->val);PreOrder(root->left);PreOrder(root->right);}
}

前序遍历递归图解:
在这里插入图片描述

2.4 中序打印实现

根据递归先递归到最左边第一个叶节点,再打印出其值,从左边第一个叶节点继续往右进行递归直到空节点函数回溯到上一个递归函数,再递归到右子树,直到完成整个二叉树的中序递归遍历

代码实现:

//中序 左 根 右
void InOrder(BTNode* root)
{if(root){InOrder(root->left);printf("%d ", root->val);InOrder(root->right);}
}

中序遍历递归图解:
在这里插入图片描述

序号表示打印循序,先从黑色箭头递归下去,再从绿色箭头回溯上来,再到蓝色箭头。

2.4 后序打印实现

先递归到最左边第一个叶节点,直到递归到空节点再回溯到上一节点的右节点继续递归直到空节点,回溯到上一节点进行打印,再回溯到上一节点的右节点,继续递归直到遇到空节点回溯。

代码实现:

//后序 左 右 根
void PostOrder(BTNode* root)
{if (root){PostOrder(root->left);PostOrder(root->right);printf("%d ", root->val);}
}

后序遍历递归图解:
在这里插入图片描述序号表示打印顺序。

2.5 层序打印实现

层序打印实现需要用到队列。

实现逻辑:
从二叉树的根开始向队列中进行存储,根存储完毕后将根出队列的同时将两个左右孩子节点也存到队列当中,之后在对左孩子节点进行出队列得同时将左孩子节点的左右孩子节点存都队列中(为空不进行存储),再继续向后将右孩子出队列得同时再将右孩子得左右孩子存入队列中,以此入队列,出队列,直到队列为空为止,输出变为层序。

实现逻辑图解:
在这里插入图片描述代码实现:

void TreeLevelOrder(BTNode* root)
{Queue q;QueueInit(&q);if (root){QueuePush(&q, root);}while (!QueueEmpty(&q)){BTNode* front = QueueFront(&q);QueuePop(&q);printf("%d ", front->val);if (front->left){QueuePush(&q, front->left);}if (front->right){QueuePush(&q, front->right);}}printf("\n");QueueDestroy(&q);
}

对应队列函数可以去我得博客:栈和队列进行查找学习。

2.6 判断是否为完全二叉树

实现这个功能也用到了队列,所以我们放这里进行讲解
代码实现:

//判断是否为完全二叉树
bool TreeIsComplete(BTNode* root)
{Queue q;QueueInit(&q);QueuePush(&q, root);while (!QueueEmpty(&q)){BTNode* front = QueueFront(&q);QueuePop(&q);if (front == NULL){break;}    QueuePush(&q, front->left);QueuePush(&q, front->right);}while (!QueueEmpty(&q)){BTNode* front = QueueFront(&q);QueuePop(&q);if (front){return false;}}QueueDestroy(&q);return true;
}

判断逻辑:
这个判断逻辑很简单,我们可以再回顾一下完全二叉树的概念:

完全二叉树:完全二叉树是效率很高的数据结构,完全二叉树是由满二叉树而引出来的。对于深度为K的,有n个结点的二叉树,当且仅当其每一个结点都与深度为K的满二叉树中编号从1至n的结点一一对应时称之为完全二叉树。 要注意的是满二叉树是一种特殊的完全二叉树。

我们直接按照上面教的对二叉树进行层序遍历,当遇到空节点直接跳出第一次while循环,如果是完全二叉树那么队列中后面存储的将都为空节点,如果不是完全二叉树,那么队列中将还存有非空间点。

所以跳出第一次循环后我们判断队列中是否还有非空节点即可,若有返回fasle,若没有返回true。

3.其他功能实现

3.1 二叉树节点个数

代码实现:

//查节点数
int TreeSize(BTNode* root)
{return root == NULL ? 0 : TreeSize(root->left) + TreeSize(root->right) + 1;
}

同样运用递归实现
其递归图解为:
在这里插入图片描述大家可以跟随箭头走一遍逻辑。(我知道画的不好qaq,大家将就理解一下逻辑即可)

3.2 二叉树第k层节点个数

代码实现:

//计算第k行的节点数
int TreeKLevel(BTNode* root, int k)
{assert(k > 0);if (root == NULL)//必须先判断这个{return 0;}if (k == 1)//在判断这个{return 1;}return TreeKLevel(root->left, k-1)+TreeKLevel(root->right, k-1);
}

递归图解大家可以尝试画一下,有助于大家理解递归。
实现逻辑手工绘图:
在这里插入图片描述

3.3 二叉树查找值为x的节点

代码实现:

//查找x所在的节点返回对应指针
BTNode* TreeFind(BTNode* root, int x)
{if (root == NULL){return NULL;}if (root->val == x){return root;}BTNode* ret1 = TreeFind(root->left,x);if (ret1){return ret1;}BTNode* ret2 = TreeFind(root->right,x);if (ret2){return ret2;}return NULL;
}

实现逻辑手工绘图:
在这里插入图片描述

3.4 二叉树叶子节点个数

代码实现:

// 二叉树叶子节点个数
int BTLeafSize(BTNode* root)
{if (root == NULL){return 0;}if (root->left == NULL && root->right == NULL){return 1;}return BTLeafSize(root->left) + BTLeafSize(root->right);
}

3.5 二叉树的销毁

代码实现:

//二叉树销毁
void TreeDestroy(BTNode* root)//一级指针root在该函数内置为空指针无效
{if (root == NULL){return;}TreeDestroy(root->left);TreeDestroy(root->right);free(root);//root = NULL,需要在函数外置为空指针
}

二、完结撒❀

如果以上内容对你有帮助不妨点赞支持一下,以后还会分享更多编程知识,我们一起进步。
最后我想讲的是,据说点赞的都能找到漂亮女朋友❤
在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/577423.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

在低成本loT mcu上实现深度神经网络端到端自动部署-深度神经网络、物联网、边缘计算、DNN加速——文末完整资料

目录 前言 DNN 量化神经网络 并行超低功耗计算范式 面向内存的部署 结果 原文与源码下载链接 REFERENCES 前言 在物联网极端边缘的终端节点上部署深度神经网络( Deep Neural Networks,DNNs )是支持普适深度学习增强应用的关键手段。基于低成本MCU的终端节点…

Paper Digest|基于在线聚类的自监督自蒸馏序列推荐模型

论文标题: Leave No One Behind: Online Self-Supervised Self-Distillation for Sequential Recommendation 作者姓名: 韦绍玮、吴郑伟、李欣、吴沁桐、张志强、周俊、顾立宏、顾进杰 组织单位: 蚂蚁集团 录用会议: WWW 2024 …

【Linux】开始学习进程替换吧!

送给大家一句话: 人生中有些事,你不竭尽所能去做,你永远不知道你自己有多出色。—— 尾田荣一郎《海贼王》 开始学习进程替换吧 1 前言2 进程替换2.1 替换函数2.2 替换原理2.3 单进程改为多进程2.4 理解使用exec* 函数int execl (const char …

【独立开发前线】Vol.25 Dogacade-通过SEO,每个月13万的访问量

今天要给大家分享的一个案例网站是:Dogacade 网址是:Dog Academy - Home 这是一个提供狗狗训练服务的网站,网站的宣传语是:在短短 4 周内培育出您梦想中的听话、乖巧的狗狗。 网站的流量非常不错,在这么垂直利基的市…

链表中两两交换结点(力扣24)

文章目录 题目题解一、思路二、解题方法三、Code 总结 题目 Problem: 24. 两两交换链表中的节点 给你一个链表,两两交换其中相邻的节点,并返回交换后链表的头节点。你必须在不修改节点内部的值的情况下完成本题(即,只能进行节点交…

24/03/28总结

抽象类: 将共性的方法抽取到父类之后。由于每一个子类执行的内容是不一样,所以,在父类中不能确定具体的方法体。该方法就可以定义为抽象方法。 而为什么不直接在子类中定义方法:项目的完成不是一个人,如果有时忘记写方…

BaseDao封装增删改查

文章目录 什么是BaseDao操作代码增删改查询单个数据查询多个数据 总结 什么是BaseDao BaseDao是: 数据库里负责增加,删除,修改,查询 具体来说是一种接口代码,公共方法的接口类。 在dao层新建basedao,其他dao层接口继承basedao 相…

python函数参数中独立星号*的作用

python函数中间有一个()分隔,星号后面为*命名关键字参数,星号本身不是参数**。命名关键字参数,在函数调用时必须带参数名字进行调用。如下例子:

【Netty 源码】NioEventLoop 源码分析 篇二

【Netty 源码】NioEventLoop 源码分析 篇二 1.NioEventLoop 继承关系 NioEventLoop继承自SingleThreadEventLoop,一次只能执行一个线程任务,因此在父类SingleThreadEventLoop中维护了 Queue tailTasks 线程队列。 NioEventLoop又间接继承了 AbstractS…

六千字详解!一篇看懂 ArrayList 的扩容机制(完整源码解析)

☀️今天花了很久写了这篇关于 ArrayList 扩容机制源码解析的博客,在阅读源码的过程中发现了很多之前有误解的地方,也加深了对代码的理解,所以写下了这篇博客。 🎶本文附带了流程中所有的代码和附加解析,我有信心一定能…

五款常用在线JavaScript加密混淆工具详解:jscrambler、JShaman、jsfack、ipaguard和jjencode

摘要 本篇技术博客将介绍五款常用且好用的在线JavaScript加密混淆工具,包括 jscrambler、JShaman、jsfack、freejsobfuscator 和 jjencode。通过对这些工具的功能及使用方法进行详细解析,帮助开发人员更好地保护和加密其 JavaScript 代码,提…

STM32之HAL开发——串口配置(CubeMX)

串口引脚初始化(CubeMX) 选择RCC时钟来源 选择时钟频率,配置为最高频率72MHZ 将单片机调试模式打开 SW模式 选择窗口一配置为异步通信模式 点击IO口设置页面,可以看到当前使用的串口一的引脚。如果想使用复用功能,只需…