【STM32嵌入式系统设计与开发】——13WWDG(窗口看门狗应用)

这里写目录标题

  • 一、任务描述
  • 二、任务实施
    • 1、WWDG工程文件夹创建
    • 2、函数编辑
      • (1)主函数编辑
      • (2)USART1初始化函数(usart1_init())
      • (3)USART数据发送函数( USART1_Send_Data())
      • (4)USART数据发送函数( USART1_IRQHandler())
      • (5)系统时间初始化函数( SystemTinerInit())
      • (6)等待计时函数( WaitTimerOut())
      • (7)系统时间定时器中断服务函数( TIM3_IRQHandler())
      • (8)获取系统计时时间函数( GetSystemTimer())
      • (9)外部中断4初始化函数( EXTIX_Init())
      • (10)外部中断4服务函数( EXTI4_IRQHandler())
      • (11)窗口看门狗初始化函数(IWDG_Init())
      • (12)喂窗口看门狗函数(WWDG_IRQHandler())
      • (13)窗口看门狗中断配置函数(WWDG_NVIC_Init())
      • (14)喂窗口看门狗函数(WWDG_IRQHandler())
    • 3、宏定义
      • 定时器宏定义
      • 中断宏定义
      • 窗口看门狗宏定义
    • 4、知识链接
      • (1)独立看门狗
      • (2)两种看门狗喂狗的区别
    • 5、工程测试


STM32资料包:
百度网盘下载链接:链接:https://pan.baidu.com/s/1mWx9Asaipk-2z9HY17wYXQ?pwd=8888
提取码:8888


一、任务描述

在这里插入图片描述

二、任务实施

观察电路图:
TXD(底板) ————————> PA10
RXD(底板) ————————> PA9
D1 (底板) ————————> PA0
D2(底板)————————> PA8
使用USB-AB型数据线,连接15核心板USB口,串口发送接收到的数据。在这里插入图片描述

1、WWDG工程文件夹创建

步骤1:复制工程模板“1_Template”重命名为“10_WWDG”。
在这里插入图片描述
步骤2:修改项目工程名,先删除projects文件夹内除了Template.uvprojx文件外的所有内容并修改为“WWDG.uvprojx”。并删除output/obj和output/lst中的所有文件。
在这里插入图片描述
步骤3:运行“WWDG.uvprojx”打开目标选项“Options for Target”中的“Output”输出文件,并修改可执行文件名称为“WWDG”点击“OK”保存设置。最后点击“Rebuild”编译该工程生成Usart文件。
请添加图片描述
步骤4:复制“2_SingleKey”中的"1_LED"和"SingleKey"文件复制到hardware中。
在这里插入图片描述
步骤5:在“system”中新建“wwdg”文件夹,并新建“wwdg.c”和“wwdg.h”文件。
在这里插入图片描述
步骤5:工程组文件中添加“led.c”和“led.h”文件。
在这里插入图片描述
步骤5:工程组文件中添加“iwdg.c”和“iwdg.h”文件。
请添加图片描述
步骤6:目标选项添加添加头文件路径。
请添加图片描述

2、函数编辑

(1)主函数编辑

该段代码是一个嵌入式系统的主程序入口,其中包括初始化各种外设(如滴答定时器、USART1、LED等),然后进入一个无限循环,不断交替地控制LED灯的闪烁。。
在这里插入图片描述

步骤1:端口初始化准备

	//函数初始化,端口准备delay_init();                         //启动滴答定时器usart1_init(9600);                    //USART1初始化LED_Init();                           //板载LED初始化ExpLEDInit();                         //开发板LED初始化SystemTinerInit(1000-1,7200-1);       //系统时间初始化 定时100msLED = 0;  delay_ms(500);                        //让人看得到灭WWDG_Init(0X7F,0X5F,WWDG_Prescaler_8);//计数器值为7f,窗口寄存器为5f,分频数为8  

在这里插入图片描述

步骤2:实现一个简单的计时器,并在每秒打印一次计时信息。利用LED状态的改变来指示系统正在运行。

	printf("初始化成功!\r\n");            while(1){			LED = 1;     delay_ms(300);LED = 0;delay_ms(300);LED = 1;     delay_ms(300);LED = 0;delay_ms(300);LED = 1;     delay_ms(300);LED = 0;}	

在这里插入图片描述

(2)USART1初始化函数(usart1_init())

配置了 PA9 为复用推挽输出,用于 USART1 的 TXD,并配置了 PA10 为浮空输入,用于 USART1 的 RXD。并配置了 USART1 的参数,包括波特率、数据位长度、停止位数、校验位、硬件流控制和工作模式。

/*********************************************************************@Function  : USART1初始化@Parameter : bound : 波特率 @Return    : N/A
**********************************************************************/   	
void usart1_init(uint32_t bound)
{GPIO_InitTypeDef GPIO_InitStructure;             										          // 定义 GPIO 初始化结构体USART_InitTypeDef USART_InitStructure;            										          // 定义 USART 初始化结构体NVIC_InitTypeDef NVIC_InitStructure;              										          // 定义 NVIC 初始化结构体/* 时钟使能:启用 USART1 和 GPIOA 的时钟 */RCC_APB2PeriphClockCmd(RCC_APB2Periph_USART1 | RCC_APB2Periph_GPIOA, ENABLE);/* 引脚复用配置 */  // 配置 PA9 为复用推挽输出,用于 USART1 的 TXDGPIO_InitStructure.GPIO_Pin = GPIO_Pin_9;   		                             // 设置 GPIO 端口GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz;                                // 设置 GPIO 速度GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AF_PP; 								 // 设置 GPIO 模式为复用推挽GPIO_Init(GPIOA, &GPIO_InitStructure);          							     // 初始化 GPIO// 配置 PA10 为浮空输入,用于 USART1 的 RXDGPIO_InitStructure.GPIO_Pin = GPIO_Pin_10;                                      // 设置 GPIO 端口GPIO_InitStructure.GPIO_Mode = GPIO_Mode_IN_FLOATING;                           // 设置 GPIO 模式为浮空输入GPIO_Init(GPIOA, &GPIO_InitStructure);                                          // 初始化 GPIO/* NVIC 中断配置 */ NVIC_InitStructure.NVIC_IRQChannel = USART1_IRQn;                               // 设置中断通道为 USART1NVIC_InitStructure.NVIC_IRQChannelPreemptionPriority = 3;                       // 设置抢占优先级为3NVIC_InitStructure.NVIC_IRQChannelSubPriority = 3;                              // 设置子优先级为3NVIC_InitStructure.NVIC_IRQChannelCmd = ENABLE;                                 // 使能中断通道NVIC_Init(&NVIC_InitStructure);                                                 // 初始化 NVIC/* USART1 配置 */ USART_InitStructure.USART_BaudRate = bound;                                     // 设置波特率USART_InitStructure.USART_WordLength = USART_WordLength_8b;                     // 设置数据位长度为8位USART_InitStructure.USART_StopBits = USART_StopBits_1;                          // 设置停止位为1位USART_InitStructure.USART_Parity = USART_Parity_No;                             // 设置校验位为无校验USART_InitStructure.USART_HardwareFlowControl = USART_HardwareFlowControl_None; // 设置硬件流控制为无USART_InitStructure.USART_Mode = USART_Mode_Rx | USART_Mode_Tx;                 // 设置工作模式为接收和发送USART_Init(USART1, &USART_InitStructure);                                       // 初始化 USART1/*中断配置*/USART_ITConfig(USART1,USART_IT_RXNE,ENABLE);                                //开接受中断 USART_ITConfig(USART1,USART_IT_IDLE,ENABLE);                                //开空闲中断USART_ITConfig(USART1,USART_IT_TXE,ENABLE);                                 //开发送中断	USART_Cmd(USART1, ENABLE);                                                  //启用USART1USART_DataTypeStr.Usart_Tc_State = SET;	                                    //置位发送允许标志	      
}

在这里插入图片描述

(3)USART数据发送函数( USART1_Send_Data())

初始化PD14端口,并为推挽输出。

/*********************************************************************@Function  : USART数据发送函数@Parameter : Data 	 :要发送的数据缓存.Lenth  :发送长度@Return    : 发送状态   1 :失败   0 :成功
**********************************************************************/
char USART1_Send_Data(char* Data,uint8_t Lenth) 
{uint8_t uNum = 0;if(USART_DataTypeStr.Usart_Tc_State == 1)                       //判断发送标志位是否置1{USART_DataTypeStr.Usart_Tc_State = 0;                       //将发送标志位清零,表示数据已经成功放入缓存,等待发送USART_DataTypeStr.Usart_Tx_Len = Lenth;                     //获取需要发送的数据的长度       for(uNum = 0;uNum < USART_DataTypeStr.Usart_Tx_Len;uNum ++)   //将需要发送的数据放入发送缓存{USART_DataTypeStr.Usart_Tx_Buffer[uNum] = Data[uNum];}USART_ITConfig(USART1,USART_IT_TXE,ENABLE);			            //数据放入缓存后打开发送中断,数据自动发送}return USART_DataTypeStr.Usart_Tc_State;                        //返回放数据的状态值,为1表示发送失败,为0表示发送成功了
}

在这里插入图片描述

(4)USART数据发送函数( USART1_IRQHandler())

/*********************************************************************@Function  : USART1中断服务函数@Parameter : N/A @Return    : N/A
**********************************************************************/
void USART1_IRQHandler(void)                
{uint8_t Clear = Clear;                                                                           // 定义清除标志的变量,并初始化为自身static uint8_t uNum = 0;                                                                          // 静态变量,用于循环计数if(USART_GetITStatus(USART1,USART_IT_RXNE) != RESET)                                                // 判断读数据寄存器是否为非空{USART_ClearFlag(USART1, USART_IT_RXNE);                                                           // 清零读数据寄存器,其实硬件也可以自动清零USART_DataTypeStr.Usart_Rx_Buffer[USART_DataTypeStr.Usart_Rx_Num ++] = \(uint16_t)(USART1->DR & 0x01FF);                                                              // 将接收到的数据存入接收缓冲区(USART_DataTypeStr.Usart_Rx_Num) &= 0xFF;                                                     // 防止缓冲区溢出} else if(USART_GetITStatus(USART1,USART_IT_IDLE) != RESET)   // 检测空闲{Clear = USART1 -> SR;                                                                         // 读SR位Clear = USART1 -> DR;                                                                       // 读DR位,USART_DataTypeStr.Usart_Rx_Len = USART_DataTypeStr.Usart_Rx_Num;                              // 获取数据长度for(uNum = 0; uNum < USART_DataTypeStr.Usart_Rx_Len; uNum ++)          {USART_DataTypeStr.Usart_Rx_Data[uNum] = USART_DataTypeStr.Usart_Rx_Buffer[uNum];      // 将接收到的数据复制到接收数据缓冲区}USART_DataTypeStr.Usart_Rx_Num = 0;                                                           // 清空接收计数器USART_DataTypeStr.Usart_Rc_State = 1;                                                         // 数据读取标志位置1,读取串口数据}if(USART_GetITStatus(USART1,USART_IT_TXE) != RESET)                                                  // 判断发送寄存器是否为非空{USART1->DR = \((USART_DataTypeStr.Usart_Tx_Buffer[USART_DataTypeStr.Usart_Tx_Num ++]) & (uint16_t)0x01FF);    // 发送数据(USART_DataTypeStr.Usart_Tx_Num) &= 0xFF;                                                       // 防止缓冲区溢出if(USART_DataTypeStr.Usart_Tx_Num >= USART_DataTypeStr.Usart_Tx_Len){   USART_ITConfig(USART1,USART_IT_TXE,DISABLE);                                                // 发送完数据,关闭发送中断USART_DataTypeStr.Usart_Tx_Num = 0;                                                         // 清空发送计数器USART_DataTypeStr.Usart_Tc_State = 1;                                                       // 发送标志置1,可以继续发送数据了} 		}}

在这里插入图片描述

(5)系统时间初始化函数( SystemTinerInit())

Tout=((arr+1)*(psc+1))/Ft us,Ft=定时器工作频率,单位:Mhz;初始化TIM3定时器,配置定时器的周期值、预分频值、计数模式等参数,并使能定时器及其中断

/*********************************************************************@Function  : 系统时间初始化@Parameter : arr:自动重装值。psc:时钟预分频数@Return    : N/A@Read 			:Tout=((arr+1)*(psc+1))/Ft us,Ft=定时器工作频率,单位:Mhz
**********************************************************************/
void SystemTinerInit(uint16_t arr, uint16_t psc)
{TIM_TimeBaseInitTypeDef TIM_TimeBaseStructure;               // 定义TIM基本参数结构体NVIC_InitTypeDef NVIC_InitStructure;                         // 定义中断优先级配置结构体/* 时钟使能 */RCC_APB1PeriphClockCmd(RCC_APB1Periph_TIM3, ENABLE);         // 使能TIM3时钟/* TIM配置 */TIM_TimeBaseStructure.TIM_Period = arr;                      // 设置定时器的周期值TIM_TimeBaseStructure.TIM_Prescaler = psc;                   // 设置定时器的预分频值TIM_TimeBaseStructure.TIM_ClockDivision = TIM_CKD_DIV1;      // 设置时钟分频因子为1TIM_TimeBaseStructure.TIM_CounterMode = TIM_CounterMode_Up;  // 设置计数模式为向上计数TIM_TimeBaseInit(TIM3, &TIM_TimeBaseStructure);              // 初始化TIM3定时器/* 允许中断 */TIM_ITConfig(TIM3, TIM_IT_Update, ENABLE);                   // 使能TIM3更新(溢出)中断/* NVIC 配置 */NVIC_InitStructure.NVIC_IRQChannel = TIM3_IRQn;              // 设置TIM3中断通道NVIC_InitStructure.NVIC_IRQChannelPreemptionPriority = 0;    // 设置TIM3中断的抢占优先级为0NVIC_InitStructure.NVIC_IRQChannelSubPriority = 3;           // 设置TIM3中断的子优先级为3NVIC_InitStructure.NVIC_IRQChannelCmd = ENABLE;              // 使能TIM3中断通道NVIC_Init(&NVIC_InitStructure);                              // 初始化NVIC/* 使能TIMx */TIM_Cmd(TIM3, ENABLE);                                       // 使能TIM3定时器
}

(6)等待计时函数( WaitTimerOut())

定时器超时检测功能,根据传入的参数 gTimer 和系统时钟计数器,判断定时器是否超时,并返回相应的状态。

/*********************************************************************@Function  : 等待计时@Parameter : gTimer :等待时间,100ms一个单位@Return    : 1表示超时,0表示未超时
**********************************************************************/
uint8_t WaitTimerOut(uint32_t gTimer)
{	uint32_t GTr = 0;                         // 定义变量用于存储定时器剩余时间if(gTimer==0) return 1;                   // 如果等待时间为0,则直接返回1,表示不等待GTr = SystemTimer % gTimer;	              // 计算定时器剩余时间if((GTr==0) && (!Rti) && (Gti != gTimer)) // 如果定时器剩余时间为0,且上次未检测到超时,并且当前定时器时间不等于上次记录的时间{ Rti=1;                                // 设置标志表示检测到定时器超时Gti = gTimer;                         // 更新记录的定时器时间return 1;                             // 返回1表示超时}else if((GTr!=0) && (Rti))                // 如果定时器剩余时间不为0,且上次检测到超时,则将标志置为0Rti=0;if(!GetTimer) GetTimer = SystemTimer;	  // 如果记录定时器开始时间为0,则将其设置为当前系统时间if(SystemTimer - GetTimer == gTimer)      // 如果当前系统时间减去记录的定时器开始时间等于设定的等待时间,则返回1表示超时{ GetTimer = 0;                         // 将记录的定时器开始时间清零,准备下一次记录return 1;                             // 返回1表示超时}return 0;                                 // 返回0表示未超时
}

在这里插入图片描述

(7)系统时间定时器中断服务函数( TIM3_IRQHandler())

实现TIM3定时器的中断服务程序,每次定时器溢出时,增加 SystemTimer 计数值,并在计数到60时归零,同时清除中断标志位。

/*********************************************************************@Function  : 系统时间定时器中断服务函数@Parameter : N/A@Return    : N/A
**********************************************************************/
void TIM3_IRQHandler(void)   
{	// 检查定时器更新中断是否触发if(TIM_GetITStatus(TIM3, TIM_IT_Update) == SET) // 溢出中断{SystemTimer++;                                // 系统时间计数器加1if(SystemTimer == 60)	                        // 如果系统时间计数器达到60,则重置为0,并且清零记录的定时器开始时间{	SystemTimer = 0;GetTimer = 0;}}// 清除定时器更新中断标志位TIM_ClearITPendingBit(TIM3, TIM_IT_Update);     // 清除中断标志位
}

在这里插入图片描述

(8)获取系统计时时间函数( GetSystemTimer())

/*********************************************************************@Function  : 获取系统计时时间@Parameter : N/A@Return    : N/A
**********************************************************************/
uint32_t GetSystemTimer(void)
{return SystemTimer;
}

在这里插入图片描述

(9)外部中断4初始化函数( EXTIX_Init())

/*********************************************************************@Function  : 外部中断4初始化@Parameter : N/A@Return    : N/A
**********************************************************************/
void EXTIX_Init(void)
{EXTI_InitTypeDef EXTI_InitStructure;                      // 定义外部中断配置结构体NVIC_InitTypeDef NVIC_InitStructure;                      // 定义中断控制器配置结构体/*时钟使能*/RCC_APB2PeriphClockCmd(RCC_APB2Periph_AFIO, ENABLE);	      // 使能 AFIO 时钟,用于配置外部中断的映射/*中断线配置*/   GPIO_EXTILineConfig(GPIO_PortSourceGPIOC, GPIO_PinSource4); // 配置外部中断线,将 PC4 映射到外部中断4EXTI_InitStructure.EXTI_Line = EXTI_Line4;	              // 设置外部中断线为 EXTI4EXTI_InitStructure.EXTI_Mode = EXTI_Mode_Interrupt;	      // 设置外部中断模式为中断模式EXTI_InitStructure.EXTI_Trigger = EXTI_Trigger_Falling;     // 设置触发方式为下降沿触发EXTI_InitStructure.EXTI_LineCmd = ENABLE;                   // 使能外部中断线EXTI_Init(&EXTI_InitStructure);	 	                      // 初始化外部中断配置/*NVIC配置*/NVIC_InitStructure.NVIC_IRQChannel = EXTI4_IRQn;	          // 设置中断向量为外部中断4NVIC_InitStructure.NVIC_IRQChannelPreemptionPriority = 0x02;// 设置抢占优先级为2NVIC_InitStructure.NVIC_IRQChannelSubPriority = 0x03;       // 设置子优先级为3NVIC_InitStructure.NVIC_IRQChannelCmd = ENABLE;	          // 使能外部中断4NVIC_Init(&NVIC_InitStructure);                             // 初始化中断控制器配置/*关闭蜂鸣器*/beep = 0;                                                 // 初始化蜂鸣器状态为关闭
}

(10)外部中断4服务函数( EXTI4_IRQHandler())

/*********************************************************************@Function  : 外部中断4服务程序@Parameter : N/A@Return    : N/A
**********************************************************************/
void EXTI4_IRQHandler(void)
{delay_ms(10);//消抖if(DK1==0)				 beep =!beep;	EXTI_ClearITPendingBit(EXTI_Line4); //清除LINE4上的中断标志位  
}

在这里插入图片描述

(11)窗口看门狗初始化函数(IWDG_Init())

/*********************************************************************@Function  : 初始化窗口看门狗 	                                      @Parameter : tr   : T[6:0],计数器值 wr   : W[6:0],窗口值 fprer: 分频系数(WDGTB),仅最低2位有效@Return    : N/A    @Read      : Fwwdg=PCLK1/(4096*2^fprer).
**********************************************************************/
void WWDG_Init(uint8_t tr,uint8_t wr,uint32_t fprer)
{ RCC_APB1PeriphClockCmd(RCC_APB1Periph_WWDG, ENABLE);  //WWDG时钟使能WWDG_CNT=tr&WWDG_CNT;                                //初始化WWDG_CNT.   WWDG_SetPrescaler(fprer);                            //设置IWDG预分频值WWDG_SetWindowValue(wr);                             //设置窗口值WWDG_Enable(WWDG_CNT);	                             //使能看门狗 ,	设置 counter .                  WWDG_ClearFlag();                                    //清除提前唤醒中断标志位 WWDG_NVIC_Init();                                   //初始化窗口看门狗 NVICWWDG_EnableIT();                                   //开启窗口看门狗中断
} 

在这里插入图片描述

(12)喂窗口看门狗函数(WWDG_IRQHandler())

/*********************************************************************@Function  : 重设置WWDG计数器的值 	@Parameter : cnt : 计数器值 @Return    : N/A
**********************************************************************/
void WWDG_Set_Counter(uint8_t cnt)
{WWDG_Enable(cnt);                                  //使能看门狗 ,	设置 counter .	 
}

在这里插入图片描述

(13)窗口看门狗中断配置函数(WWDG_NVIC_Init())

/*********************************************************************@Function  : 窗口看门狗中断配置	@Parameter : N/A@Return    : N/A
**********************************************************************/
void WWDG_NVIC_Init(void)
{NVIC_InitTypeDef NVIC_InitStructure;                        // 定义 NVIC_InitTypeDef 结构体变量 NVIC_InitStructure.NVIC_IRQChannel = WWDG_IRQn;             // WWDG中断NVIC_InitStructure.NVIC_IRQChannelPreemptionPriority = 2;   // 抢占2,子优先级3,组2NVIC_InitStructure.NVIC_IRQChannelSubPriority = 3;          // 抢占2,子优先级3,组2NVIC_InitStructure.NVIC_IRQChannelCmd = ENABLE;             // 设置 NVIC_InitTypeDef 结构体变量NVIC_Init(&NVIC_InitStructure);                             //初始化 NVIC
}

在这里插入图片描述

(14)喂窗口看门狗函数(WWDG_IRQHandler())

/*********************************************************************@Function  : 喂窗口看门狗 	@Parameter : N/A@Return    : N/A
**********************************************************************/
void WWDG_IRQHandler(void)
{WWDG_SetCounter(WWDG_CNT);	     //当禁掉此句后,窗口看门狗将产生复位WWDG_ClearFlag();	            //清除提前唤醒中断标志位LED1=!LED1;		                //LED状态翻转
}

在这里插入图片描述

3、宏定义

步骤1:主函数添加所需的头文件,主源文件部分报错消失

#include "system_config.h"
#include "stm32f10x_gpio.h"
#include "stm32f10x_wwdg.h"//头文件包含
/*************SYSTEM*****************/
#include ".\wwdg\wwdg.h"/***********Hardweare***************/
#include "led.h"

在这里插入图片描述

步骤2:添加中断源文件所需的头文件,与定义WWDG计数器变量

#include "stm32f10x_wwdg.h"
#include "stm32f10x_rcc.h"
#include "misc.h"
#include ".\wwdg\wwdg.h"
#include "led.h"//保存WWDG计数器的设置值,默认为最大. 
uint8_t WWDG_CNT=0x7f; 

在这里插入图片描述

步骤3:添加串口通信宏定义

#define USART_RX_LEN  200               // 接收缓冲区最大长度
#define USART_TX_LEN  200               // 发送缓冲区最大长度
#define UART_NUM      10                // 串口结构体最大对象数量

在这里插入图片描述
步骤4:添加函数声明

void usart1_init(uint32_t bound);
extern USART_DataTypeDef USART_DataTypeStr; 
char USART1_Send_Data(char* Data,uint8_t Lenth);

在这里插入图片描述
步骤5:添加数据类型和宏的头文件

//定义串口数据结构体
typedef struct USART_DataType 
{uint8_t Usart_Rx_Len;          // 接收缓冲区长度uint8_t Usart_Tx_Len;          // 发送缓冲区长度uint8_t Usart_Rx_Num;          // 接收数据计数uint8_t Usart_Tx_Num;          // 发送数据计数uint8_t Usart_Rc_State;        // 接收状态标志位uint8_t Usart_Tc_State;        // 发送状态标志位char Usart_Rx_Buffer[USART_RX_LEN]; // 接收缓冲区char Usart_Tx_Buffer[USART_TX_LEN]; // 发送缓冲区char Usart_Rx_Data[USART_RX_LEN];   // 接收数据char Usart_Tx_Data[USART_TX_LEN];   // 发送数据
} USART_DataTypeDef;

在这里插入图片描述
步骤6:定义一个串口数组变量

USART_DataTypeDef USART_DataTypeStr={0};

在这里插入图片描述

定时器宏定义

步骤1:创建一个宏定义保护

#ifndef __TIMER_H
#define __TIMER_H#endif

在这里插入图片描述

步骤2:添加函数声明

void SystemTinerInit(uint16_t arr,uint16_t psc);//系统时间初始化函数
uint32_t GetSystemTimer(void);                  //获取系统计时时间函数
uint8_t WaitTimerOut(uint32_t gTimer);          //等待计时函数

在这里插入图片描述

步骤3:添加数据类型和宏的头文件

#include <stdint.h> 

在这里插入图片描述

中断宏定义

步骤1:创建一个宏定义保护

#ifndef __TIMER_H
#define __TIMER_H#endif

在这里插入图片描述
步骤2:添加函数声明

void EXTIX_Init(void);	

在这里插入图片描述
步骤3:添加数据类型和宏的头文件

#include <stdint.h> 

在这里插入图片描述

窗口看门狗宏定义

步骤1:创建一个宏定义保护

#ifndef _WWDG_H
#define _WWDG_H#endif

在这里插入图片描述

步骤2:添加函数声明

void WWDG_Init(uint8_t tr,uint8_t wr,uint32_t fprer);
void WWDG_Set_Counter(uint8_t cnt);       
void WWDG_NVIC_Init(void);

在这里插入图片描述

步骤3:添加数据类型和宏的头文件

#include <stdint.h> 

在这里插入图片描述

4、知识链接

(1)独立看门狗

在这里插入图片描述
独立看门狗(IWDG)监控整个系统的运行状态,而窗口看门狗(WWDG)则监控特定任务或代码段的执行情况。

(2)两种看门狗喂狗的区别

在这里插入图片描述

独立看门狗(IWDG)通常通过定时器产生重置信号,需要定期喂狗以防止系统被认为出现故障;而窗口看门狗(WWDG)则在一个可调整的时间窗口内进行监控,需要在该窗口内喂狗,否则系统会被认为出现故障。

5、工程测试

在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/578296.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

virtualbox 日常运维

前言 虽然平常以macOS和Linux作为主打工作环境&#xff0c;但还是有很多需要用到windows的时候&#xff0c;如camtasia和券商QMT软件。 在二手ThinkPad P53上安装了几个windows虚机&#xff0c;作为测试环境。Mac笔记本远程桌面连接嫌麻烦&#xff0c;还是命令行舒服。MacOS自…

缓冲区溢出漏洞学习总结(漏洞原理及其利用方法)

文章目录 前言1、缓冲区溢出漏洞概述1.1、漏洞概述1.2、缓冲区溢出漏洞概述1.3、缓冲区溢出攻击概述1.4、引发缓冲区溢出的原因 2、栈溢出漏洞2.1、栈溢出漏洞概述2.2、栈溢出漏洞利用2.2.1、利用方法一&#xff1a;修改返回地址2.2.2、利用方法二&#xff1a;覆盖临接变量 3、…

notepad++里安装32位和64位的16进制编辑器Hex-Editor

这个16进制编辑器确实是个好东西&#xff0c;平时工作种会经常用到&#xff0c; 这是hex-editor的官网。这个里边只能下载32位的(64位的看最下边)&#xff0c;选一个合适的版本&#xff0c;我当时选的是最新的版本 https://sourceforge.net/projects/npp-plugins/files/Hex%20E…

uniapp开发App——登陆流程 判断是否登陆,是,进入首页,否,跳转到登录页

一、登陆流程 文字描述&#xff1a;用户进入App&#xff0c;之后就是判断该App是否有用户登陆过&#xff0c;如果有&#xff0c;直接进入首页&#xff0c;否则跳转到登陆页&#xff0c;登陆成功后&#xff0c;进入首页。 流程图如下&#xff1a; 二、在uniapp项目中代码实现 实…

接口自动化框架搭建(四):pytest的使用

1&#xff0c;使用说明 网上资料比较多&#xff0c;我这边就简单写下 1&#xff0c;目录结构 2&#xff0c;test_1.py创建两条测试用例 def test_1():print(test1)def test_2():print(test2)3&#xff0c;在pycharm中执行 4&#xff0c;执行结果&#xff1a; 2&#xff0…

DARTS-PT: RETHINKING ARCHITECTURE SELECTION IN DIFFERENTIABLE NAS

Rethinking Architecture Selection in Differentiable NAS 论文链接&#xff1a;https://arxiv.org/abs/2108.04392v1 项目链接&#xff1a;https://github.com/ruocwang/darts-pt ABSTRACT 可微架构搜索(Differentiable Neural Architecture Search, NAS)是目前最流行的网…

软件工程学习笔记14——案例解析篇

一、大型开源项目对软件工程的应用 以VS Code为例&#xff0c;看大型开源项目是如何应用软件工程的。 软件工程的核心&#xff0c;就是围绕软件项目开发&#xff0c;对开发过程的组织&#xff0c;对方法的运用&#xff0c;对工具的使用。 所以当我们去观察一个软件项目&#…

接口自动化框架搭建(八):pytest+allure+jenkins接入

1&#xff0c;安装allure插件 2&#xff0c;创建jenkins项目 怎么确定路径&#xff0c;可以查看工作空间&#xff0c;jenkins默认根目录就是工作空间 配置执行用例的命令&#xff0c;可以现在pycharm上试一下&#xff0c;然后在jenkins中配置&#xff1a; 把启动java服务的代…

【解決|三方工具】Obi Rope 编辑器运行即崩溃问题

开发平台&#xff1a;Unity 2021.3.7 三方工具&#xff1a;Unity资产工具 - Obi Rope   问题背景 使用Unity三方开发工具 - Obi Rope 模拟绳索效果。配置后运行 Unity 出现报错并崩溃。通过崩溃日志反馈得到如下图所示 这是一个序列化问题造成的崩溃&#xff0c;指向性为 Obi…

Vidmore Video Fix for Mac 视频修复工具

Vidmore Video Fix for Mac是一款功能强大且易于使用的视频修复工具&#xff0c;专为Mac用户设计。它凭借先进的视频修复技术&#xff0c;能够帮助用户解决各种视频问题&#xff0c;如视频文件损坏、无法播放、格式不支持等。 软件下载&#xff1a;Vidmore Video Fix for Mac v…

剑指Offer题目笔记21(计数排序)

面试题74&#xff1a; 问题&#xff1a; ​ 输入一个区间的集合&#xff0c;将重叠的区间合并。 解决方案&#xff1a; ​ 先将所有区间按照起始位置排序&#xff0c;然后比较相邻两个区间的结束位置就能知道它们是否重叠。如果它们重叠就将它们合并&#xff0c;然后判断合并…

Flutter 使用 AndroidStudio 给(Android 安卓)进行签名方法

一、使用 AndroidStudio 创建签名 使用 AndroidStudio 打开 Flutter项目中的 android 文件夹首次打开 AndroidStudio 会加载一会。菜单栏 &#xff1a; Build -> Generate Signed Bundle APK... 选中 APK -> Next点击Create new....下面按照需求填写即可- 文件夹选择 项…