C++进阶,手把手带你学继承

🪐🪐🪐欢迎来到程序员餐厅💫💫💫

                                            主厨:邪王真眼

  主厨的主页:Chef‘s blog  

 所属专栏:c++大冒险

        

 总有光环在陨落,总有新星在闪烁


【本节目标】

1.继承的概念及定义

2.基类和派生类对象赋值转换

3.继承中的作用域

4.派生类的默认成员函数

5.继承与友元

6.继承与静态成员

7.复杂的菱形继承及菱形虚拟继承

8.继承的总结和反思

9.笔试面试题

1.继承的概念及定义

1.1继承的概念

继承机制是面向对象程序设计使代码可以复用的最重要的手段,它允许程序员在持原有类特性的基础上进行扩展,增加功能,这样产生新的类,称派生类。继承呈现了面向对象程序设计的层次结构,体现了由简单到复杂的认知过程。以前我们接触的复用都是函数复用,承是类设计层次的复用

1.2 继承定义

class Person
{
public:void Print(){cout << "name:" << _name << endl;cout << "age:" << _age << endl;}
protected:string _name = "peter"; // 姓名int _age = 18;  // 年龄
};
// 继承后父类的Person的成员(成员函数+成员变量)都会变成子类的一部分。这里体现出了
Student复用了Person的成员。下面我们使用监视窗口查看Student对象,可以看到变量的复用。调用Print可以看到成员函数的复用。
class Student : public Person
{
protected:int _stuid; // 学号
};
int main()
{Student s;s.Print();return 0;
}

1.2.1定义格式

下面我们看到 Person是父类,也称作基类。Student是子类,也称作派生类

1.2.2继承关系和访问限定符 

1.2.3继承基类成员访问方式的变化 

总结:

  • 1. 基类private成员在派生类中无论以什么方式继承都是不可见的。这里的不可见是指基类的私 有成员还是被继承到了派生类对象中,但是语法上限制派生类对象不管在类里面还是类外面 都不能去访问它
  • 2. 如果基类成员不想在类外直接被访问,但需要在 派生类中能访问,就定义为protected可以看出保护成员限定符是因继承才出现的
  • 3. 基类的私有成员在子类都是不可见。基类的其他 成员在子类的访问方式 == Min(成员在基类的访问限定符,继承方式)public > protected > private
  • 4. 使用关键字class时默认的继承方式是private,使用struct时默认的继承方式是public不过 最好显示的写出继承方式
  • 5. 在实际运用中一般使用都是public继承,几乎很少使用protetced/private继承,也不提倡 使用protetced/private继承,因为protetced/private继承下来的成员都只能在派生类的类里面使用,实际中扩展维护性不强

2.基类和派生类对象赋值转换

class Person
{
protected :string _name; // 姓名string _sex;  // 性别int _age; // 年龄
};
class Student : public Person
{
public :int _No ; // 学号
};
1.派生类对象可以赋值给基类的对象 / 基类的指针 / 基类的引用。这里有个形象的说法叫切片
或者切割。寓意把派生类中父类那部分切来赋值过去。
 Student sobj ;// 1.子类对象可以赋值给父类对象/指针/引用Person pobj = sobj ;Person* pp = &sobj;Person& rp = sobj;
2.基类对象不能赋值给派生类对象。
//2.基类对象不能赋值给派生类对象
sobj = pobj;//err

3.基类的指针或者引用可以通过强制类型转换赋值给派生类的指针或者引用。但是必须是基类

的指针是指向派生类对象时才是安全的。 这里基类如果是多态类型,可以使用RTTI(Run
Time Type Information)的dynamic_cast 来进行识别后进行安全转换。(ps:这个我们后
面再讲解)
    // 3.基类的指针可以通过强制类型转换赋值给派生类的指针pp = &sobjStudent* ps1 = (Student*)pp; // 这种情况转换时可以的。ps1->_No = 10;pp = &pobj;Student* ps2 = (Student*)pp; // 这种情况转换时虽然可以,但是会存在越界访问的问
题ps2->_No = 10;

3.继承中的作用域

要点提醒:

  • 1. 在继承体系中基类派生类都有独立的作用域
  • 2. 子类和父类中有同名成员,子类成员将屏蔽父类对同名成员的直接访问,这种情况叫隐藏,
  • 也叫重定义。(在子类成员函数中,可以使用 基类::基类成员 显示访问
  • 3. 需要注意的是如果是成员函数的隐藏,只需要函数名相同就构成隐藏。
  • 4. 注意在实际中在继承体系里面最好不要定义同名的成员

Student的_num和Person的_num构成隐藏关系,可以看出这样代码虽然能跑,但是非常容易混淆

class Person 
{
protected :string _name = "小李子"; // 姓名int _num = 111;   // 身份证号
};
class Student : public Person
{
public:void Print(){cout<<" 姓名:"<<_name<< endl;cout<<" 身份证号:"<<Person::_num<< endl;cout<<" 学号:"<<_num<<endl;}
protected:int _num = 999; // 学号
};
void Test()
{Student s1;s1.Print();
};

 


B中的fun和A中的fun不是构成重载,因为不是在同一作用域
B中的fun和A中的fun构成隐藏,成员函数满足函数名相同就构成隐藏。 


class A
{
public:void fun(){cout << "func()" << endl;}
};
class B : public A
{
public:void fun(int i){A::fun();cout << "func(int i)->" <<i<<endl;}
};
void Test()
{B b;b.fun(10);
};

4.派生类的默认成员函数

6 个默认成员函数, 默认 的意思就是指我们不写,编译器会变我们自动生成一个,那么在派生类
中,这几个成员函数是如何生成的呢?

先实现一个基类 

class Person
{
public :Person(const char* name = "peter"): _name(name ){cout<<"Person()" <<endl;}Person(const Person& p): _name(p._name){
cout<<"Person(const Person& p)" <<endl;}Person& operator=(const Person& p ){cout<<"Person operator=(const Person& p)"<< endl;if (this != &p)_name = p ._name;return *this ;}~Person(){cout<<"~Person()" <<endl;}
protected :string _name ; // 姓名
};
派生类的框架:

class Student : public Person
{
protected :int _num ; //学号
};

4.1构造函数

  派生类的构造函数必须调用基类的构造函数初始化基类的那一部分成员。如果基类没有默认
的构造函数,则必须在派生类构造函数的初始化列表阶段显示调用。
Person(const char* name = "peter"): _name(name ){cout<<"Person()" <<endl;}

4.2拷贝构造

  派生类的拷贝构造函数必须调用基类的拷贝构造完成基类的拷贝初始化。
 Student(const Student& s): Person(s), _num(s ._num){cout<<"Student(const Student& s)" <<endl ;}

4.3.赋值重载

派生类的 operator= 必须要调用基类的 operator= 完成基类的复制。
Student& operator = (const Student& s ){cout<<"Student& operator= (const Student& s)"<< endl;if (this != &s){Person::operator =(s);_num = s ._num;}return *this ;} 

4.4析构函数

派生类的析构函数会在 被调用完成后自动调用 基类的析构函数清理基类成员。因为这样才能
保证派生类对象先清理派生类成员再清理基类成员的顺序
 ~Student(){cout<<"~Student()" <<endl;}

要点提醒:

  • 1. 派生类对象初始化先调用基类构造再调派生类构造。
  • 2. 派生类对象析构清理先调用派生类析构再调基类的析构。
  • 3.那么编译器会对析构函数名进行特殊处理,处理成destrutor(),所以父类析构函数不加 virtual的情况下,子类析构函数和父类析构函数构成隐藏关系

5.继承与友元

友元关系不能继承 ,也就是说基类友元不能访问子类私有和保护成员

6. 继承与静态成员

基类定义了 static 静态成员,则整个继承体系里面只有一个这样的成员 。无论派生出多少个子
类,都只有一个 static 成员实例
我们可以通过这种方式来计算人数
class Person
{
public :Person () {++ _count ;}
protected :string _name ; // 姓名
public :static int _count; // 统计人的个数。
};
int Person :: _count = 0;
class Student : public Person
{
protected :int _stuNum ; // 学号
};
class Graduate : public Student
{
protected :string _seminarCourse ; // 研究科目
};
void TestPerson()
{Student s1 ;Student s2 ;Student s3 ;Graduate s4 ;cout <<" 人数 :"<< Person ::_count << endl;Student ::_count = 0;cout <<" 人数 :"<< Person ::_count << endl;
}

7.复杂的菱形继承及菱形虚拟继承(重中之重)

7.1继承的种类

单继承:一个子类只有一个直接父类时称这个继承关系为单继承

多继承:一个子类有两个或以上直接父类时称这个继承关系为多继承 

菱形继承:菱形继承是多继承的一种特殊情况。

7.2菱形继承的问题

从下面的对象成员模型构造,可以看出菱形继承有数据冗余和二义性的问题。

Assistant 的对象中 Person 成员会有两份

 

class Person
{
public :string _name ; // 姓名
};
class Student : public Person
{
protected :int _num ; //学号
};
class Teacher : public Person
{
protected :int _id ; // 职工编号
};
class Assistant : public Student, public Teacher
{
protected :string _majorCourse ; // 主修课程
};
void Test ()
{// 这样会有二义性无法明确知道访问的是哪一个Assistant a ;
a._name = "peter";
// 需要显示指定访问哪个父类的成员可以解决二义性问题,但是数据冗余问题无法解决a.Student::_name = "xxx";a.Teacher::_name = "yyy";
}

7.3解决方案

虚拟和可以解决二义性和数据冗余的问题。 需要注意的是,虚拟继承不要在其他地 方去使用。

使用虚拟继承时,在继承方式前加上virtual关键字:

class Person
{
public :string _name ; // 姓名
};
class Student : virtual public Person
{
protected :int _num ; //学号
};
class Teacher : virtual public Person
{
protected :int _id ; // 职工编号
};
class Assistant : public Student, public Teacher
{
protected :string _majorCourse ; // 主修课程
};
void Test ()
{Assistant a ;a._name = "peter";
}

7.4虚拟继承解决数据冗余和二义性的原理

为了研究虚拟继承原理,我们给出了一个简化的菱形继承继承体系,再借助 内存窗口观察对象成
员的模型。
class A
{
public:int _a;
};
// class B : public A
class B : virtual public A
{
public:int _b;
};
// class C : public A
class C : virtual public A
{
public:int _c;
};
class D : public B, public C
{
public:int _d;
};
int main()
{D d;d.B::_a = 1;d.C::_a = 2;d._b = 3;d._c = 4;d._d = 5;return 0;
}
下图是菱形继承的内存对象成员模型:这里可以看到数据冗余
下图是菱形虚拟继承的内存对象成员模型:这里可以分析出 D 对象中将 A 放到的了对象组成的最下
面,这个 A 同时属于 B C ,那么 B C 如何去找到公共的 A 呢? 这里是通过了 B C 的两个指针,指
向的一张表。这两个指针叫虚基表指针,这两个表叫虚基表。虚基表中存的偏移量。通过偏移量
可以找到下面的 A

// 有童鞋会有疑问为什么D中B和C部分要去找属于自己的A?那么大家看看当下面的赋值发生时,d是
不是要去找出B/C成员中的A才能赋值过去?D d;
B b = d;
C c = d;

8.继承与组合

  1. 继承是一种is-a的关系。也就是说每个派生类对象都是一个基类对象。
  2. 组合是一种has-a的关系。假设B组合了A,每个B对象中都有一个A对象,
  3. 继承允许你根据基类的实现来定义派生类的实现。这种通过生成派生类的复用通常被称 为白箱复用(white-box reuse)。术语白箱是相对可视性而言:在继承方式中,基类的 内部细节对子类可见 。继承一定程度破坏了基类的封装,基类的改变,对派生类有很 大的影响。派生类和基类间的耦合度高。
  4. 对象组合是类继承之外的另一种复用选择。新的更复杂的功能可以通过组装或组合对象 来获得。对象组合要求被组合的对象具有良好定义的接口。这种复用风格被称为黑箱复 (black-box reuse),因为对象的内部细节是不可见的。对象只以黑箱的形式出现。 组合类之间没有很强的依赖关系,耦合度低。
  5. 实际尽量多去用组合。组合的耦合度低,代码维护性好。不过继承也有用武之地的,有 些关系就适合继承那就用继承,另外要实现多态,也必须要继承。类之间的关系可以用 继承,可以用组合,就用组合。
// Car和BMW Car和Benz构成is-a的关系class Car{protected:string _colour = "白色"; // 颜色string _num = "陕ABIT00"; // 车牌号};class BMW : public Car{public:void Drive() {cout << "好开-操控" << endl;}};class Benz : public Car{public:void Drive() {cout << "好坐-舒适" << endl;}};// Tire和Car构成has-a的关系class Tire{protected:string _brand = "Michelin";  // 品牌size_t _size = 17;         // 尺寸};class Car{protected:string _colour = "白色"; // 颜色string _num = "陕ABIT00"; // 车牌号Tire _t; // 轮胎};  

9.继承的总结和反思

  • 1. 很多人说C++语法复杂,其实多继承就是一个体现。有了多继承,就存在菱形继承,有了菱形继承就有菱形虚拟继承,底层实现就很复杂。所以一般不建议设计出多继承,一定不要设计出菱形继承。否则在复杂度及性能上都有问题。
  • 2. 多继承可以认为是C++的缺陷之一,很多后来的OO语言都没有多继承,如Java。

10.笔试面试题

学完了继承来试试这几道面试题吧。
  • 1. 什么是菱形继承?菱形继承的问题是什么?
  • 2. 什么是菱形虚拟继承?如何解决数据冗余和二义性的
  • 3. 继承和组合的区别?什么时候用继承?什么时候用组合

创作不易,觉得有用的话就点个赞支持一下吧。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/578992.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

《HelloGitHub》第 96 期

兴趣是最好的老师&#xff0c;HelloGitHub 让你对编程感兴趣&#xff01; 简介 HelloGitHub 分享 GitHub 上有趣、入门级的开源项目。 https://github.com/521xueweihan/HelloGitHub 这里有实战项目、入门教程、黑科技、开源书籍、大厂开源项目等&#xff0c;涵盖多种编程语言 …

vue中使用图片url直接下载图片

vue中使用图片url直接下载图片 // 下载图片downloadByBlob(url, name) {let image new Image()image.setAttribute(crossOrigin, anonymous)image.src urlimage.onload () > {let canvas document.createElement(canvas)canvas.width image.widthcanvas.height image…

如何在 Linux 中查找命令的执行时间

在 Linux 操作系统中&#xff0c;查找命令的执行时间对于优化系统性能、调试程序以及评估脚本效率至关重要。本文将介绍几种方法来准确地测量命令的执行时间。 使用时间命令 时间命令&#xff08;time&#xff09;是一个内置的 shell 命令&#xff0c;用于测量其他命令或程序的…

谷歌浏览器如何查看HTTP版本

在谷歌浏览器中查看HTTP版本&#xff0c;你可以按照以下步骤操作&#xff1a; 首先&#xff0c;你需要打开谷歌浏览器&#xff0c;然后访问你想要查看HTTP版本的网页&#xff1b; 在页面上&#xff0c;按下F12键或右键点击页面任意位置&#xff0c;选择 “检查”&#xff08;I…

Leetcode 剑指 Offer II 071.按权重随机选择

题目难度: 中等 原题链接 今天继续更新 Leetcode 的剑指 Offer&#xff08;专项突击版&#xff09;系列, 大家在公众号 算法精选 里回复 剑指offer2 就能看到该系列当前连载的所有文章了, 记得关注哦~ 题目描述 给定一个正整数数组 w &#xff0c;其中 w[i] 代表下标 i 的权重…

基于java+springboot+vue实现的电商个性化推荐系统(文末源码+Lw+ppt)23-389

摘 要 伴随着我国社会的发展&#xff0c;人民生活质量日益提高。于是对电商个性化推荐进行规范而严格是十分有必要的&#xff0c;所以许许多多的信息管理系统应运而生。此时单靠人力应对这些事务就显得有些力不从心了。所以本论文将设计一套电商个性化推荐系统&#xff0c;帮…

nvidia-smi查看无进程,但GPU占用率100%问题解决

问题&#xff1a;nvidia-smi查看无进程&#xff0c;但GPU占用率100%问题解决 原因&#xff1a;记住记住记住CtrlZ是把当前运行程序挂起&#xff0c;并不是终止运行&#xff0c;终止用CtrlC,前段时间跑代码测性能和看部分结果一直用的CtrlZ&#xff0c;导致程序都处于挂起状态&…

适用于 Windows 的 6 个最佳视频转换器

视频转换器可以帮助您在设备上转换和播放不受支持的视频格式。它还可以方便地减小视频文件大小、以通用格式组织所有视频或与其他人共享文件以在不同设备上播放。 Windows 有大量视频转换器可供选择。虽然有些是免费的&#xff0c;但其他一些则提供迎合专业用户的高级功能。在…

数据结构——线性表(二)

线性表顺序存储结构的优缺点 优点:1.无须为表示表中元素之间的逻辑关系而增加额外的存储空间 2.可以快速的存取表中的任一位置的元素 缺点:1.插入和删除操作需要移动大量的元素 2.当线性表长度变化较大的时候,难以确定存储空间的容量 3.造成存储空间的"碎片" 所以…

Go语言学习Day2:注释与变量

名人说&#xff1a;莫道桑榆晚&#xff0c;为霞尚满天。——刘禹锡&#xff08;刘梦得&#xff0c;诗豪&#xff09; 创作者&#xff1a;Code_流苏(CSDN)&#xff08;一个喜欢古诗词和编程的Coder&#x1f60a;&#xff09; 目录 1、注释①为什么要写注释&#xff1f;②单行注释…

C++11入门手册第一节,学完直接上手Qt(共两节)

入门 hello.cpp #include <iostream>int main() { std::cout << "Hello Quick Reference\n"<<endl; return 0;} 编译运行 $ g hello.cpp -o hello$ ./hello​Hello Quick Reference 变量 int number 5; // 整数float f 0.95; //…

双向长短期BiLSTM的回归预测-附MATLAB代码

BiLSTM是一种带有正反向连接的长短期记忆网络&#xff08;LSTM&#xff09;。 BiLSTM通过两个独立的LSTM层&#xff0c;一个按时间顺序处理输入&#xff0c;另一个按时间倒序处理输入&#xff0c;分别从正向和反向两个方向捕捉输入序列的特征。具体地&#xff0c;正向LSTM按时…