SAD法(附python实现)和Siamese神经网络计算图像的视差图

1 视差图

视差图:以左视图视差图为例,在像素位置p的视差值等于该像素在右图上的匹配点的列坐标减去其在左图上的列坐标

视差图和深度图:
z = f b d z = \frac{fb}{d} z=dfb
其中 d d d 是视差, f f f 是焦距, b b b 是基线长度

image-20240322211454831

所以,视差越大 ——> 深度越小

2 传统方法

原理:是在给定窗口大小的情况下,对左图像和右图像的对应窗口进行比较,计算它们之间的绝对差的总和,从而确定最佳匹配的视差

SAD:Sum of Absolute Differences 即差的绝对值和
S A D ( x , y , d ) = ∣ w L ( x , y ) − w R ( x − d , y ) ∣ SAD(x,y,d) = |w_L(x, y) - w_R(x-d, y)| SAD(x,y,d)=wL(x,y)wR(xd,y)
大致流程:

  1. 对左图像和右图像分别进行零填充以适应窗口的边界

    为在计算这些像素的视差时,窗口可能会超出图像的范围

  2. 对于左图像的每个像素,依次遍历整个图像

  3. 对于每个像素,以其为中心取窗口大小的区域,并在右图像中搜索匹配窗口

    # 一定是减去d,因为右边图像是左边图像向右平移d个像素
    window_right = image_right[y:y + window_size, x - d:x - d + window_size]
    

    设置一个 max_disparity 来限制搜索范围

  4. 计算左图像窗口和右图像匹配窗口的绝对差的总和,即SAD值

    now_sad = np.sum(np.abs(window_left - window_right))
    
  5. 找到最小的SAD值,将对应的视差 d 保存到该像素位置

代码实现:

def sad(image_left, image_right, window_size=3, max_disparity=50):D = np.zeros_like(image_left)height = image_left.shape[0]width = image_left.shape[1]# 零填充padding = window_size // 2image_left = add_padding(image_left, padding).astype(np.float32)image_right = add_padding(image_right, padding).astype(np.float32)for y in range(height):for x in range(width):# 左边图像的窗口window_left = image_left[y:y + window_size, x:x + window_size]best_disparity = 0min_sad = float('inf')for d in range(max_disparity):if x - d < 0:continue# 一定是减去d,因为右边图像是左边图像向右平移d个像素window_right = image_right[y:y + window_size, x - d:x - d + window_size]now_sad = np.sum(np.abs(window_left - window_right))if now_sad < min_sad:min_sad = now_sadbest_disparity = d# 保存SADD[y, x] = best_disparityreturn D # 返回视差图

3 卷积方法

传统方法很慢,卷积方法避免了的嵌套循环,效率比起传统方法高了很多

利用图像卷积的思想,通过对每个候选视差值计算绝对差图像,并将其与一个均值滤波器进行卷积操作来实现视差图的计算

具体步骤如下:

  1. 对于每个候选的视差值,计算两幅图像在水平方向上的绝对差

    img_diff = np.abs(image_left - right_shifted)
    
  2. 将计算得到的绝对差图像与一个均值滤波器进行卷积操作。均值滤波器的大小应与窗口大小相匹配,用于平滑绝对差图像,从而减少噪声和不稳定性

    # 平滑均值滤波卷积核
    kernel = np.ones((window_size, window_size)) / (window_size ** 2)
    # 通过卷积运算,可以计算出每个像素邻域的总差异,也就是SAD值
    img_sad = convolve(img_diff, kernel, mode='same')  
    

    卷积的作用:

    1. 平滑处理:卷积可以用来对图像进行平滑处理,也就是降噪。当卷积核是一个均值滤波器,就可以用于计算图像中每个像素的邻域的平均值。这样可以减少图像中的随机噪声,使图像变得更加平滑
    2. 计算局部差异:在计算左图和右图之间的 SAD 值时,需要对每个像素的邻域进行操作。这可以通过卷积来实现。卷积结果中的每个像素值表示了对应的像素邻域在左图和右图之间的差异程度
  3. 对于每个像素,选择具有最小卷积结果的视差值作为最终的视差值

代码实现:

def sad_convolve(image_left, image_right, window_size=3, max_disparity=50):# 零填充padding = window_size // 2image_left = add_padding(image_left, padding).astype(np.float32)image_right = add_padding(image_right, padding).astype(np.float32)SAD = np.zeros((image_left.shape[0], image_left.shape[1], max_disparity + 1))# 卷积核kernel = np.ones((window_size, window_size)) / (window_size ** 2)# 范围很重要,要覆盖0和max_disparity才行for d in range(0, max_disparity才行 + 1):if d == 0:right_shifted = image_rightelse:right_shifted = np.zeros_like(image_right)right_shifted[:, d:] = image_right[:, :-d]img_diff = np.abs(image_left - right_shifted)# 通过卷积运算,可以计算出每个像素邻域的总差异,也就是SAD值img_sad = convolve(img_diff, kernel, mode='same')SAD[:, :, d] = img_sadD = np.argmin(SAD, axis=2) # 选出算出最小SAD的视差值return D

4 问题

块匹配方法在处理时存在一些限制,主要包括以下几点:

  1. 局部窗口匹配:块匹配方法通常只考虑局部窗口内的像素信息进行匹配,而对于同质区域,局部窗口内的像素可能非常相似,导致匹配困难

  2. 窗口大小选择:选择合适的窗口大小对于块匹配的性能至关重要。

    • 小窗口:在纹理丰富的区域,可以选择较小的窗口;但对于同质区域可能无法捕捉到同质区域的整体特征
    • 大窗口:在纹理稀疏的区域,应选择较大的窗口大小;但可能会将不同物体的特征混合在一起,导致误匹配,但较大的窗口大小会增加计算量
    窗口大小结果
    3image-20240323095500779
    7image-20240323095545339
    15image-20240323095611812

5 Siamese神经网络

Siamese神经网络由两个相同的子网络组成,这两个子网络共享相同的参数(权重和偏置)。无论输入是什么,它们都会通过相同的网络结构进行处理

  1. 特征提取:给定两个输入,它们分别通过两个子网络进行前向传播,从而得到它们的特征表示。这些特征表示捕捉了输入的关键信息
  2. 相似性评估:得到特征表示后,Siamese神经网络通过某种方式比较这两个特征表示,以确定它们之间的相似性。我们使用余弦相似度来操作

其有两种结构:

  1. 余弦相似度 (Cosine Similarity)

    • 原理:计算两个特征向量之间的夹角余弦值,范围在-1到1之间。值越接近1,表示两个向量越相似;值越接近-1,表示两个向量越不相似;值接近0表示两个向量之间没有线性关系
    • 应用:通过计算特征向量之间的余弦相似度,可以衡量它们在特征空间中的方向是否相似,其没有MLP,卷积层后直接标准化进行点乘,速度非常快,且效果也较好
  2. 学习相似性 (Learned Similarity)

    image-20240323152802625
    • 原理:需要训练一个神经网络,该网络将输入的特征向量映射到一个标量值,表示它们之间的相似性得分
    • 应用:神经网络可以学习到更复杂的特征表示,并且可以捕捉输入之间的非线性关系。但是,由于MLP的计算成本较高,会较于前者较慢

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/588527.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

C语言第三十九弹---预处理(上)

✨个人主页&#xff1a; 熬夜学编程的小林 &#x1f497;系列专栏&#xff1a; 【C语言详解】 【数据结构详解】 预处理 1、预定义符号 2、#define定义常量 3、#define定义宏 4、带有副作用的宏参数 5、宏替换的规则 6、宏和函数的对比 总结 在C语言中&#xff0c;预处…

臻奶惠无人售货机:新零售时代的便捷消费革命

臻奶惠无人售货机&#xff1a;新零售时代的便捷消费革命 在新零售的浪潮中&#xff0c;智能无人售货机作为一个创新的消费模式&#xff0c;已经成为距离消费者最近的便捷购物点之一。这种模式不仅能够满足居民对消费升级的需求&#xff0c;还能通过建立多样化和多层次的消费体…

【御控物联】JavaScript JSON结构转换(12):对象To数组——键值互换属性重组

文章目录 一、JSON结构转换是什么&#xff1f;二、核心构件之转换映射三、案例之《JSON对象 To JSON数组》四、代码实现五、在线转换工具六、技术资料 一、JSON结构转换是什么&#xff1f; JSON结构转换指的是将一个JSON对象或JSON数组按照一定规则进行重组、筛选、映射或转换…

酒吧酒馆微信小程序设计基于Java,SpringBoot,Vue和UniApp

摘要 该设计目标是创建一个集成了Java, SpringBoot, Vue和UniApp技术的酒吧微信小程序&#xff0c;为用户提供一个功能全面、操作便捷的服务体验。通过利用SpringBoot的高效微服务架构&#xff0c;后端能够快速处理用户请求&#xff0c;实现酒品浏览、订单管理等核心功能&…

Centos7环境下安装MySQL8详细教程

1、下载mysql安装包 2、检查是否安装过mysql ps:因为以前用yum安装过&#xff0c;所以先用yum卸载。如果不是此方式或者没安装过则跳过 [rootlocalhost ~]# yum remove mysql 已加载插件&#xff1a;fastestmirror 参数 mysql 没有匹配 不删除任何软件包 查看是否有mysql依赖 …

【SQL Server】1. 认识+使用

1. 创建数据库的默认存储路径 C:\ProgramData\Microsoft\Windows\Start Menu\Programs\Microsoft SQL Server 2008 R2 当我们选择删除数据库时&#xff0c;对应路径下的文件也就删除了 2. 导入导出数据工具的路径 3. 注册数据库遇到的问题 ??? 目前的问题就是服务器新建…

【C语言基础】:自定义类型(一)--> 结构体

文章目录 一、内置类型与自定义类型1.1 内置类型&#xff08;基本数据类型&#xff09;1.2 自定义类型 二、结构体2.1 结构体的声明2.2 结构体变量的创建和初始化2.3 结构体的特殊声明2.4 结构体的自引用 三、结构体内存对齐3.1 对齐规则3.2 为什么存在内存对齐3.3 修改默认对齐…

突破数据障碍—如何使用IP代理服务获取量子科学研究领域最新数据

写在前面 在这个数字化的时代&#xff0c;人们越来越关注隐私保护和网络访问自由。我最近也深入研究了一下IP代理服务&#xff0c;在规避地理限制、绕过封锁以及保护个人隐私方面&#xff0c;它确实发挥了关键作用。 一、基础介绍 起因是有个项目需要对量子领域进行深入的研究之…

SpringBoot修复http慢速攻击

web漏洞扫描工具发现 http慢速攻击&#xff0c;如下图&#xff1a; 修改springboot框架文件配置修复如下&#xff1a; server:port: 8080tomcat:max-threads: 200 # tomcat最大线程数connection-timeout: 3000 # 连接超时时间max-connections: 1000 # 最大连接数max-http-head…

ngAlain下使用nz-select与文件上传框出现灵异bug

bug描述 初始化页面&#xff0c;文件上传框无法出现&#xff1a; 但点击一次选择框以后&#xff0c;就会出现&#xff1a; 真的很神奇。。。 下面逐步排查看看是什么原因。 设想一&#xff1a; 选择框与文件框不可同时存在&#xff0c;删掉选择框看看&#xff1a; 还…

中望CAD专业版 2025:国产CAD制图设计新标杆,引领行业新风尚

随着科技的不断进步和行业的快速发展&#xff0c;计算机辅助设计&#xff08;CAD&#xff09;作为现代工程设计的重要工具&#xff0c;正日益受到广大设计师和工程师的青睐。在这个领域&#xff0c;中望CAD专业版 2025以其卓越的性能和人性化的设计&#xff0c;成为了国产CAD制…

Linux——线程控制

目录 前言 一、线程创建 1.创建线程 2.线程传递结构体 3.创建多线程 4.收到信号的线程 二、线程终止 三、线程等待 四、线程分离 五、取消线程 六、线程库管理的原理 七、站在语言角度理解pthread库 八、线程的局部存储 前言 前面我们学习了线程概念和线程创建&…