代码随想录第29天|491.递增子序列 46.全排列 47.全排列 II

目录:

491.递增子序列

46.全排列

47.全排列 II 

491.递增子序列

491. 非递减子序列 - 力扣(LeetCode)

代码随想录 (programmercarl.com)

回溯算法精讲,树层去重与树枝去重 | LeetCode:491.递增子序列_哔哩哔哩_bilibili

给你一个整数数组 nums ,找出并返回所有该数组中不同的递增子序列,递增子序列中 至少有两个元素 。你可以按 任意顺序 返回答案。

数组中可能含有重复元素,如出现两个整数相等,也可以视作递增序列的一种特殊情况。

示例 1:

输入:nums = [4,6,7,7]
输出:[[4,6],[4,6,7],[4,6,7,7],[4,7],[4,7,7],[6,7],[6,7,7],[7,7]]

示例 2:

输入:nums = [4,4,3,2,1]
输出:[[4,4]]

提示:

  • 1 <= nums.length <= 15
  • -100 <= nums[i] <= 100

第一反应是把所有的子序列列出来,然后再判断是不是递增子序列。

 回溯三部曲:
1、确定参数:除了path、result和startIndex之外,还需要一个集合来存放一层的值,避免在同一层中出现重复的值从而出现重复的子序列:

// 声明一个结果集合,用于存储所有满足条件的子序列List<List<Integer>> result = new ArrayList<>();// 声明一个路径集合,用于存储当前正在构建的子序列List<Integer> path = new ArrayList<>();HashSet<Integer> hs = new HashSet<>();
private void backTracking(int[] nums, int startIndex) {
}

 2、确定终止条件:当path的大小大于1,且path里面的值符合曾序序列的要求时,把path加到result数组里,然后返回:

if (path.size() >= 2)result.add(new ArrayList<>(path));

3、确定单层搜索的逻辑:
同一父节点下同层元素中,如果一个数字在同层已经出现过的话,就不能再使用了,因为再次使用的话会出现重复子序列:

 for (int i = startIndex; i < nums.length; i++) {// 如果当前路径不为空,并且路径中的最后一个数字大于当前数字,或者当前数字已经在路径中出现过,则跳过当前数字if (!path.isEmpty() && path.get(path.size() - 1) > nums[i] || hs.contains(nums[i]))continue;// 将当前数字加入到路径中hs.add(nums[i]);path.add(nums[i]);// 递归调用,继续寻找以当前数字结尾的子序列backTracking(nums, i + 1);// 回溯,将当前数字从路径中移除,准备尝试其他可能的数字path.remove(path.size() - 1);}

综合代码:

// 定义一个名为 Solution 的类
class Solution {// 声明一个结果集合,用于存储所有满足条件的子序列List<List<Integer>> result = new ArrayList<>();// 声明一个路径集合,用于存储当前正在构建的子序列List<Integer> path = new ArrayList<>();// 主方法,入口点public List<List<Integer>> findSubsequences(int[] nums) {// 调用回溯函数,开始查找所有满足条件的子序列backTracking(nums, 0);// 返回结果集合return result;}// 回溯函数,用于查找所有满足条件的子序列private void backTracking(int[] nums, int startIndex) {// 如果当前路径的长度大于等于2,则将其加入到结果集合中if (path.size() >= 2)result.add(new ArrayList<>(path));            // 创建一个哈希集合,用于记录当前路径中已经出现过的数字HashSet<Integer> hs = new HashSet<>();// 遍历数组,从startIndex位置开始for (int i = startIndex; i < nums.length; i++) {// 如果当前路径不为空,并且路径中的最后一个数字大于当前数字,或者当前数字已经在路径中出现过,则跳过当前数字if (!path.isEmpty() && path.get(path.size() - 1) > nums[i] || hs.contains(nums[i]))continue;// 将当前数字加入到路径中hs.add(nums[i]);path.add(nums[i]);// 递归调用,继续寻找以当前数字结尾的子序列backTracking(nums, i + 1);// 回溯,将当前数字从路径中移除,准备尝试其他可能的数字path.remove(path.size() - 1);}}
}

这里仍然有一个小疑惑:为什么hs里面的数不需要弹出呢?

46.全排列 

. - 力扣(LeetCode)

代码随想录 (programmercarl.com)

组合与排列的区别,回溯算法求解的时候,有何不同?| LeetCode:46.全排列_哔哩哔哩_bilibili

给定一个不含重复数字的数组 nums ,返回其 所有可能的全排列 。你可以 按任意顺序 返回答案。

示例 1:

输入:nums = [1,2,3]
输出:[[1,2,3],[1,3,2],[2,1,3],[2,3,1],[3,1,2],[3,2,1]]

示例 2:

输入:nums = [0,1]
输出:[[0,1],[1,0]]

示例 3:

输入:nums = [1]
输出:[[1]]

提示:

  • 1 <= nums.length <= 6
  • -10 <= nums[i] <= 10
  • nums 中的所有整数 互不相同

这道题我第一次看到的时候觉得就是每个位置上每个数字都可以放,但是不知道怎么代码实现。看了卡哥视频:
回溯三部曲:
1、确定参数:排列是有序的,也就是说 [1,2] 和 [2,1] 是两个集合,这和之前分析的子集以及组合所不同的地方

可以看出元素1在[1,2]中已经使用过了,但是在[2,1]中还要在使用一次1,所以处理排列问题就不用使用startIndex了。

但排列问题需要一个used数组,标记已经选择的元素。

List<List<Integer>> result = new ArrayList<>();// 存放符合条件结果的集合
LinkedList<Integer> path = new LinkedList<>();// 用来存放符合条件结果
boolean[] used; // 用于标记数字是否被使用过

2、确定终止条件:叶子节点终止,即path长度和nums数组的大小一样时终止:

 if (path.size() == nums.length){// 将当前路径加入到结果集合中result.add(new ArrayList<>(path));return;}

3、确定单层搜索的逻辑:

// 遍历数组中的每个元素for (int i = 0; i < nums.length; i++){// 如果该元素已经被使用过,则跳过if (used[i]){continue;}// 标记该元素为已使用used[i] = true;// 将该元素加入到当前路径中path.add(nums[i]);// 递归调用,继续生成全排列结果permuteHelper(nums);// 回溯,将当前加入的元素移除path.removeLast();// 标记该元素为未使用used[i] = false;}

综合代码:

class Solution {List<List<Integer>> result = new ArrayList<>();// 存放符合条件结果的集合LinkedList<Integer> path = new LinkedList<>();// 用来存放符合条件结果boolean[] used; // 用于标记数字是否被使用过// 主函数,输入数组 nums,返回其全排列结果public List<List<Integer>> permute(int[] nums) {// 如果数组为空,则直接返回结果集合if (nums.length == 0){return result;}// 初始化 used 数组为与 nums 相同长度的布尔数组used = new boolean[nums.length];// 调用递归函数进行全排列permuteHelper(nums);// 返回全排列结果return result;}// 辅助递归函数,用于生成全排列结果private void permuteHelper(int[] nums){// 如果当前路径长度等于数组长度,表示已经得到一个全排列结果if (path.size() == nums.length){// 将当前路径加入到结果集合中result.add(new ArrayList<>(path));return;}// 遍历数组中的每个元素for (int i = 0; i < nums.length; i++){// 如果该元素已经被使用过,则跳过if (used[i]){continue;}// 标记该元素为已使用used[i] = true;// 将该元素加入到当前路径中path.add(nums[i]);// 递归调用,继续生成全排列结果permuteHelper(nums);// 回溯,将当前加入的元素移除path.removeLast();// 标记该元素为未使用used[i] = false;}}
}

47.全排列 II 

47. 全排列 II - 力扣(LeetCode)

代码随想录 (programmercarl.com)

回溯算法求解全排列,如何去重?| LeetCode:47.全排列 II_哔哩哔哩_bilibili

给定一个可包含重复数字的序列 nums ,按任意顺序 返回所有不重复的全排列

示例 1:

输入:nums = [1,1,2]
输出:
[[1,1,2],[1,2,1],[2,1,1]]

示例 2:

输入:nums = [1,2,3]
输出:[[1,2,3],[1,3,2],[2,1,3],[2,3,1],[3,1,2],[3,2,1]]

提示:

  • 1 <= nums.length <= 8
  • -10 <= nums[i] <= 10

如图,还是要考虑一个去重的逻辑。

1、确定参数:

 // 存放结果List<List<Integer>> result = new ArrayList<>();// 暂存结果List<Integer> path = new ArrayList<>();
  // 标记每个数字是否被使用过boolean[] used = new boolean[nums.length];

2、确定终止条件:

// 如果当前路径长度等于数组长度,说明已经找到一个排列if (path.size() == nums.length) {result.add(new ArrayList<>(path)); // 将当前路径加入结果集return; // 结束当前递归}

3、确定单层搜索逻辑:used[i-1]为false的时候,才保证了是树层上的数值不能相同,而不是树枝上。

// 遍历所有数字for (int i = 0; i < nums.length; i++) {// 如果当前数字已经被使用过,直接跳过if (i > 0 && nums[i] == nums[i - 1] && used[i - 1] == false) {continue;}// 如果当前数字未被使用过,开始处理if (used[i] == false) {used[i] = true; // 标记当前数字被使用过path.add(nums[i]); // 将当前数字加入路径backTrack(nums, used); // 递归处理下一层path.remove(path.size() - 1); // 回溯,移除当前数字used[i] = false; // 恢复当前数字的未使用状态}}

综合代码:

class Solution {// 存放结果List<List<Integer>> result = new ArrayList<>();// 暂存结果List<Integer> path = new ArrayList<>();// 主函数,入口public List<List<Integer>> permuteUnique(int[] nums) {// 标记每个数字是否被使用过boolean[] used = new boolean[nums.length];Arrays.fill(used, false); // 初始化为未使用状态Arrays.sort(nums); // 对输入数组排序,确保相同数字相邻backTrack(nums, used); // 调用回溯函数return result; // 返回最终结果}// 回溯函数,用于搜索所有排列组合private void backTrack(int[] nums, boolean[] used) {// 如果当前路径长度等于数组长度,说明已经找到一个排列if (path.size() == nums.length) {result.add(new ArrayList<>(path)); // 将当前路径加入结果集return; // 结束当前递归}// 遍历所有数字for (int i = 0; i < nums.length; i++) {// 如果当前数字已经被使用过,直接跳过if (i > 0 && nums[i] == nums[i - 1] && used[i - 1] == false) {continue;}// 如果当前数字未被使用过,开始处理if (used[i] == false) {used[i] = true; // 标记当前数字被使用过path.add(nums[i]); // 将当前数字加入路径backTrack(nums, used); // 递归处理下一层path.remove(path.size() - 1); // 回溯,移除当前数字used[i] = false; // 恢复当前数字的未使用状态}}}
}

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/589643.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

PS从入门到精通视频各类教程整理全集,包含素材、作业等(7)复发

PS从入门到精通视频各类教程整理全集&#xff0c;包含素材、作业等 最新PS以及插件合集&#xff0c;可在我以往文章中找到 由于阿里云盘有分享次受限制和文件大小限制&#xff0c;今天先分享到这里&#xff0c;后续持续更新 PS敬伟01——90集等文件 https://www.alipan.com/s…

盲盒一番赏小程序搭建:打造神秘与惊喜的赏玩新体验

随着移动互联网的快速发展&#xff0c;小程序因其便捷、轻量级的特点&#xff0c;逐渐成为了连接商家与消费者的新桥梁。盲盒一番赏小程序的搭建&#xff0c;旨在为用户带来一种全新的赏玩体验&#xff0c;满足他们对神秘与惊喜的追求。 盲盒一番赏小程序将传统的盲盒概念与一…

【智能算法】猎豹优化器(CO)原理及实现

目录 1.背景2.算法原理2.1算法思想2.2算法过程 3.结果展示4.参考文献 1.背景 2022年&#xff0c;MA Akbari等人受到自然界中猎豹捕猎行为启发&#xff0c;提出了猎豹优化器&#xff08;The Cheetah Optimizer&#xff0c;CO&#xff09;。 2.算法原理 2.1算法思想 CO法对猎…

P1102 A-B 数对 (非二分,不开龙永远的痛,用map解决)

可是我真的会伤心 题目链接 思路&#xff1a;1.本来想的是暴力&#xff0c;两层循环模拟每个数。 2.后来想先把每个数字的个数求出来放在数组nums【】中&#xff0c;并把不重复的数字存到数组b&#xff0c;再两层循环b数组应该时间复杂度会好些&#xff0c;如果b数组中的两个数…

欧拉路径欧拉回路

欧拉回路&#xff0c;指遍历图时通过图中每条边且仅通过一次&#xff0c;最终回到起点的一条闭合回路&#xff0c;适用于有向图与无向图&#xff0c;如果不强制要求回到起点&#xff0c;则被称为欧拉路径。 欧拉图&#xff1a;具备欧拉回路的图 无向图&#xff1a;图的所有顶…

全球范围内2nm晶圆厂建设加速

随着人工智能浪潮席卷而来&#xff0c;先进制程芯片的重要性日益凸显。当前&#xff0c;3nm工艺节点是行业内最先进的节点。与此同时&#xff0c;台积电、三星、英特尔、Rapidus等厂商正积极布局建设2nm晶圆厂。台积电与三星此前计划于2025年量产2nm芯片&#xff0c;而Rapidus则…

【Java】Thread详解

&#x1f352;前言 本文将从以下几方面来展开对Thread的介绍。 1.线程创建 2.线程中断 3.线程等待 4.线程休眠 在前面的文章中&#xff0c;已经总结了关于Thread的一些理解。 在阅读本文之前&#xff0c;最好对其有一些基础的了解。 文章链接: 【JavaSE】进程是什么&#xff1f…

基于lora技术微调Gemma(2B)代码实践

一、前置条件 获得模型访问权&#xff0c;选择Colab运行时&#xff0c;配置训练环境。 先在Kaggle上注册&#xff0c;然后获得Gemma 2B 的访问权&#xff1b; 然后在Google colab 配置环境&#xff0c;主要是GPU的选择&#xff0c;免费的是T4&#xff0c;建议采用付费的A100…

C++——list类及其模拟实现

前言&#xff1a;这篇文章我们继续进行C容器类的分享——list&#xff0c;也就是数据结构中的链表&#xff0c;而且是带头双向循环链表。 一.基本框架 namespace Mylist {template<class T>//定义节点struct ListNode{ListNode<T>* _next;ListNode<T>* _pre…

【重学C语言】三、C语言最简单的程序

【重学C语言】三、C语言最简单的程序 最简单的程序头文件使用尖括号 < >使用双引号 ""区别与注意事项示例 主函数认识三个错误 常量和变量常量ASCII 码表转义字符 关键字数据类型关键字存储类关键字修饰符关键字控制流程关键字函数相关关键字其他关键字 变量变…

Linux 恶意软件“Migo”针对 Redis 进行加密劫持攻击

安全研究人员遇到了一种新的加密劫持活动&#xff0c;该活动使用一种名为 Migo 的新恶意软件&#xff0c;该恶意软件针对 Linux 主机上的 Redis 服务器。在 Cado Security 研究人员注意到在野外利用 Redis 系统的新命令后&#xff0c;该活动曝光了。 初始访问 根据 Cado secu…

RUST语言基本数据类型认识

1.RUST的基本数据类型参考: 2.使用RUST数据类型声明变量并赋值: let a:i8=1;//8位有符号整数let a1:u8=2;//8位无符号整数let b:i16=1;//16位有符号整数let b1:u16=2;//16位无符号整数let c:i32=1;//32位有符号整数let c1:u32=2;//32位无符号整数let d:i64=1;//64位有符号整数l…