Scikit-learn聚类方法代码批注及相关练习

一、代码批注

代码来自:https://scikit-learn.org/stable/auto_examples/cluster/plot_dbscan.html#sphx-glr-auto-examples-cluster-plot-dbscan-py

import numpy as np
from sklearn.cluster import DBSCAN
from sklearn import metrics
from sklearn.datasets import make_blobs
from sklearn.preprocessing import StandardScaler# make_blobs:为聚类产生数据集及其相应的标签;n_samples:样本点个数;centers:类别数;cluster_std:每个类别的方差;random_state:随机种子
# 这里centers里的三个二维坐标,其实代表了聚类的三个中心
centers = [[1, 1], [-1, -1], [1, -1]]
X, labels_true = make_blobs(n_samples=750, centers=centers, cluster_std=0.4, random_state=0)# 标准化
X = StandardScaler().fit_transform(X)# 预估器,并得出模型(eps:数据点的邻域半径;min_samples:某个数据点的邻域内最少有的数据点个数)
db = DBSCAN(eps=0.2, min_samples=7).fit(X)# 生成n_samples个False
core_samples_mask = np.zeros_like(db.labels_, dtype=bool)
# 预测出的结果(有结果的为True,为噪音的是False)
core_samples_mask[db.core_sample_indices_] = True
# 获得预测结果
labels = db.labels_
# 获得预测的聚类数,忽略掉噪音
n_clusters_ = len(set(labels)) - (1 if -1 in labels else 0)
# 获得噪音数
n_noise_ = list(labels).count(-1)# 预测出的集群数,对应图中5中颜色
print('Estimated number of clusters: %d' % n_clusters_)
# 预测出噪音点的数量,对应图中的黑点
print('Estimated number of noise points: %d' % n_noise_)
# 同质性:簇的纯洁程度—对比分类问题的精度
print("Homogeneity: %0.3f" % metrics.homogeneity_score(labels_true, labels))
# 完整性:簇的完整性—对比分类问题的召回率
print("Completeness: %0.3f" % metrics.completeness_score(labels_true, labels))
# v测度:用来评估同一个数据集上两个独立赋值的一致性
print("V-measure: %0.3f" % metrics.v_measure_score(labels_true, labels))
# 调节的兰德系数(ARI):衡量两个数据分布的吻合程度
print("Adjusted Rand Index: %0.3f" % metrics.adjusted_rand_score(labels_true, labels))
# 调整互信息(AMI):衡量两个数据分布的吻合程度
print("Adjusted Mutual Information: %0.3f" % metrics.adjusted_mutual_info_score(labels_true, labels))
# 轮廓系数:将某个对象与自己的簇的相似程度和与其他簇的相似程度进行比较(肘方法)
print("Silhouette Coefficient: %0.3f" % metrics.silhouette_score(X, labels))import matplotlib.pyplot as pltunique_labels = set(labels)
# 给每个label赋个颜色
colors = [plt.cm.Spectral(each) for each in np.linspace(0, 1, len(unique_labels))]
for k, col in zip(unique_labels, colors):# 给噪音为黑色if k == -1:col = [0, 0, 0, 1]# 开始绘制,获得该种类的点class_member_mask = (labels == k)# core_samples_mask里false就是黑色噪音点# 取出同一类的点(这样&可以过滤掉黑点。如果没有core_samples_mask(黑点为false)会把黑点也画很大)xy = X[class_member_mask & core_samples_mask]plt.plot(xy[:, 0], xy[:, 1], 'o', markerfacecolor=tuple(col), markeredgecolor='k', markersize=14)# 获得噪音点,注意:db.core_sample_indices_没出现的的不一定就是噪音点(小圆圈)xy = X[class_member_mask & ~core_samples_mask]plt.plot(xy[:, 0], xy[:, 1], 'o', markerfacecolor=tuple(col), markeredgecolor='k', markersize=6)plt.title('Estimated number of clusters: %d' % n_clusters_)
plt.show()

在这里插入图片描述
在实验中一直有个困惑,不知道这个小圆圈是怎么画上去的。它的原因是在“db.core_sample_indices_”和“db.labels”,起初我以为“db.core_sample_indices_”会生成除噪音点以外的其他index,也就是区分开了噪音点与聚类点。但其实并不是,有少部分不在“db.core_sample_indices_”中的点也是聚类点,在下方打印出来的值分别与它俩相对,可以看见前者并没有为32的index,理论上它应该为-1噪音点,但打印出“db.labels”发现index为32的值是1,是一个聚类点。这点也在scikit learn文档最后一段进行了说明,文档解释到图中大的圆为“core sample”,而小的圆为“non-core sample”,它也是聚类的一部分。
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

二、DBSCAN的使用

通过改变DBSCAN中min_samples参数观察图形的聚类效果。
在这里插入图片描述
当min_samples为41时编译器报错。
在这里插入图片描述
观察上图可以发现随着min_samples的增大cluster越来越少,噪音点越来越多,直至报错。这是因为DBSCAN算法是基于密度的算法,所以它将密集区域内的点看作核心点(核心样本)。它主要有两个参数:min_samples和eps。

eps表示数据点的邻域半径,如果某个数据点的邻域内至少有min_sample个数据点,则将该数据点看作为核心点。如果某个核心点的邻域内有其他核心点,则将它们看作属于同一个簇。如果min_sampLes设置地太大,那么意味着更少的点会成为核心点,而更多的点将被标记为噪声。

如果将eps设置得非常小,则有可能没有点成为核心点,并且可能导致所有点都被标记为噪声。如下图为eps=0.05,min_samples=5的图。
在这里插入图片描述
如果将eps设置为非常大,则将导致所有点都被划分到同一个簇。如下图为esp=0.3,min_samples=5的图。
在这里插入图片描述

三、KMeans的使用

由于KMeans并没有“core_sample_indices”这个属性,也就是不会分离出噪音点,需将该条语句注释掉。在画图时,由于并没有噪音点,也要进行相应改写。
在这里插入图片描述
在这里插入图片描述
KMeans算法是根据给定的n个数据对象的数据集,构建n个划分聚类的方法,每个划分聚类即为一个簇。该方法将数据划分为n个簇,每个簇至少有一个数据对象,每个数据对象必须属于而且只能属于一个簇。同时要满足同一簇中的数据对象相似度高,不同簇中的数据对象相似度较小。聚类相似度是利用各簇中对象的均值来进行计算的。

KMeans 算法的处理流程如下,首先,随机地选择k个数据对象,每个数据对象代表一个簇中心,即选择k个初始中心;对剩余的每个对象,根据其与各簇中心的相似度(距离),将它赋给与其最相似的簇中心对应的簇;然后重新计算每个簇中所有对象的平均值,作为新的簇中心。不断重复以上这个过程,直到准则函数收敛,也就是簇中心不发生明显的变化。通常采用均方差作为准则函数,即最小化每个点到最近簇中心的距离的平方和。新的簇中心计算方法是计算该簇中所有对象的平均值,也就是分别对所有对象的各个维度的值求平均值,从而得到簇的中心点。

四、KMeans与DBSCAN对比

KMeansDBSCAN
使用簇的基于原型的概念。使用基于密度的概念。
只能用于具有明确定义的质心(如均值)的数据。要求密度定义(基于传统的欧几里得密度概念)对于数据是有意义的。
需要指定簇的个数作为参数。不需要事先知道要形成的簇类的数量,自动确定簇个数。
很难处理非球形的簇和不同形状的簇。可以发现任意形状的簇类,可以处理不同大小和不同形状的簇。
可以用于稀疏的高纬数据,如文档数据。不能很好反映高维数据。
可以发现不是明显分离的簇,即便簇有重叠也可以发现。会合并有重叠的簇。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/59125.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

怎么学习JavaScript相关技术? - 易智编译EaseEditing

学习JavaScript相关技术需要一步步地积累知识和实践经验。以下是一些建议的学习步骤和资源: 基础知识: 开始学习JavaScript之前,了解基本的编程概念和术语。你可以通过在线课程、教材或教学视频来学习编程的基础知识。 学习基本语法&#x…

mysql转sqlite3

在项目中需要将mysql迁移到sqlite3中,此时需要作数据转换 准备工作 下载mysql2sqlite转换工具 https://github.com/dumblob/mysql2sqlite/archive/refs/heads/master.zip 下载sqlite3 https://www.sqlite.org/download.html 转换 命令行中输入如下命令 1、cd …

【香瓜说职场】如何高效地提问(2018.05.06)

一、什么是低效地提问? 香瓜先举3个非常非常常见的低效提问实例: 1、“为什么我的XXX不成功?” 这个问题就像“为什么我会摔倒”,可能原因有“腿残疾”、“路上有坑”、“眼神不好”等无数种原因……“不摔倒”的我是回答不了的、…

.NET根据类的值进行序列化反序列化操作

前言: 在.NET种,序列化一般常用的方式是使用Newtonsoft.Json进行序列化和反序列化操作,比如创建一个Person类 public class Person {public string Name { get; set; }public int Age { get; set; } }序列化为json // 对象序列化为 JSONPe…

【Spring Boot】拦截器与统一功能处理

博主简介:想进大厂的打工人博主主页:xyk:所属专栏: JavaEE进阶 上一篇文章我们讲解了Spring AOP是一个基于面向切面编程的框架,用于将某方面具体问题集中处理,通过代理对象来进行传递,但使用原生Spring AOP实现统一的…

【图像分类】CNN + Transformer 结合系列.4

介绍两篇利用Transformer做图像分类的论文:CoAtNet(NeurIPS2021),ConvMixer(ICLR2022)。CoAtNet结合CNN和Transformer的优点进行改进,ConvMixer则patch的角度来说明划分patch有助于分类。 CoAtN…

ARM微架构

一、流水线 二、指令流水线 指令流水线 指令流水线 指令流水线 ARM指令流水线 ARM7采用3级流水线 ARM9采用5级流水线 Cortex-A9采用8级流水线 注1:虽然流水线级数越来越多,但都是在三级流水线的基础上进行了细分 PC的作用(取指) …

opencv基础49-图像轮廓02-矩特征cv2.moments()->(形状分析、物体检测、图像识别、匹配)

矩特征(Moments Features)是用于图像分析和模式识别的一种特征表示方法,用来描述图像的形状、几何特征和统计信息。矩特征可以用于识别图像中的对象、检测形状以及进行图像分类等任务。 矩特征通过计算图像像素的高阶矩来提取特征。这些矩可以…

【GO】 33.go-zero 示例

1. 获取go-zero库 go get -u github.com/zeromicro/go-zero 2. 安装goctl brew install goctlgoctl -v #goctl version 1.5.4 darwin/amd64 3. 创建.api文件, greet.api goctl api -o greet.api syntax "v1"info (title: // TODO: add titledesc: //…

手眼标定眼在手上

1、为什么要用手眼标定 参考手眼标定特别是眼在手上在网上的文章很多,但很多在实际中调试不通。在定位时候,往往希望相机能返回的是机械的世界坐标,而不是相机的的图像坐标。从而间接计算出相机坐标系与机械坐标世界坐标转换矩阵&#xff0c…

算法与数据结构-跳表

文章目录 什么是跳表跳表的时间复杂度跳表的空间复杂度如何高效的插入和删除跳表索引动态更新代码示例 什么是跳表 对于一个单链表来讲,即便链表中存储的数据是有序的,如果我们要想在其中查找某个数据,也只能从头到尾遍历链表。这样查找效率…

【Spring专题】手写简易Spring容器过程分析

前置知识 《【Spring专题】Spring底层核心原理解析》 思路整理 我们在上一节《【Spring专题】Spring底层核心原理解析》课里面有简单分析过一个Spring容器的一般流程,所以,本节课我们这里尝试写一下简易的Spring容器。 手写源码示例 一、手写前的准…